147 research outputs found

    Dynamic Causal Patterns of Desertification

    Get PDF

    Implementation of sustainable farming practices by cocoa farmers in Ecuador and Uganda: the influence of value chain factors

    Get PDF
    A key strategy of chocolate manufacturers is the promotion of sustainable farming practices amongst their supplying cocoa producers. A growing body of micro-economic literature has analysed factors influencing the adoption of such practices, yet broadly disregarded value chain factors. Information on how factors within single value chains increase the adoption of sustainable farming practices can help direct chocolate companies’ investments and increase return of investments in sustainability. The objective of this study was to understand: (a) how important value chain factors are, relative to farmer and farm factors, for cocoa farmers’ implementation of sustainable farming practices and (b) through which mechanisms value chain factors influence sustainable farming practices implementation. By integrating the practice adoption with sustainable supply chain management literature, we contribute to closing an important research gap. We collected data from 394 cocoa farmers in Ecuador and Uganda and analysed the determinants of implementation sustainable farming practices, testing quantitatively whether value chain factors with variation within single value chains are significantly associated with practice implementation. These factors included information factors (farmers’ access to training; advisory service through the value chain) and structural factors (value chain organisation and persistence; farmers’ dependency on this value chain). We selected 11 sustainable farming practices or indicators across three sustainability dimensions, i.e., environmental, social, and economic. We found that value chain factors are comparable to farmer and farm factors in explaining the implementation of sustainable farming practices across dimensions. Both capacity building and stable relationships were significantly related with the implementation of certain sustainable farming practices. Yet these results were weaker than expected, indicating that their potential was not fully exploited within our case study value chains. Through their value chain sustainability initiatives, chocolate companies should disseminate knowledge, address inhibitors to sustainable farming practices implementation beyond knowledge, and align sustainability goals with all value chain actors

    The emergence of land change science for global environmental change and sustainability

    Get PDF
    Land change science has emerged as a fundamental component of global environmental change and sustainability research. This interdisciplinary field seeks to understand the dynamics of land cover and land use as a coupled human-environment system to address theory, concepts, models, and applications relevant to environmental and societal problems, including the intersection of the two. The major components and advances in land change are addressed: observation and monitoring; understanding the coupled system-causes, impacts, and consequences; modeling; and synthesis issues. The six articles of the special feature are introduced and situated within these components of study. Land Change and Its Science H uman-driven changes in the terrestrial surface of the earth hold wide-ranging significance for the structure and function of ecosystems to the earth system, with equally far-reaching consequences for human well-being (1). The antiquity of the unintended impacts of these changes is well documented for locales and regions (2, 3), and those linked to megafauna losses obtained a global reach by 10,000 B.P. (4-6). Deforestation and irrigation were the largest sources of human-released greenhouse gasses to the atmosphere until the advent of industrial era fossil-fuel burning, and as much as 35% of the human-induced CO 2 equivalents in the atmosphere today can be traced to the totality of landuse/cover changes Today, as much as 50% of the earth's ice-free land surface has been transformed (9, 10), and virtually all land has been affected in some way by such processes as coadapted landscapes, climate change, and tropospheric pollution ʈ In the face of these global dimensions, local to regional land changes remain important. For example, the largescale replacement of natural land cover by urban and agricultural land uses in southern Florida has reduced precipitation there (19), consistent with land changeregional climate impacts found elsewhere (20). Even more dramatically, massive irrigated agricultural projects triggered the collapse of the Aral Sea and its fishing industry, with feedbacks that include wind-dispersed deposition of surface salts from the dry sea bed on adjacent agricultural lands and even on the glacial sources of rivers feeding the sea (21). Changes in land and ecosystems and their implications for global environmental change and sustainability are a major research challenge for the humanenvironmental sciences The daunting objectives of LCS The Dimensions of LCS: Advances, Implications, and Challenges Observation, Monitoring, and Land Characterization. The number of and improvements in air-and space-borne sensors over the past two decades have fundamentally altered the capacity to observe Author contributions: B.L.T., E.F.L., and A.R. wrote the paper. The authors declare no conflict of interest. † To whom correspondence should be addressed. E-mail: [email protected]. ¶ ''Land transformation'' refers to radical changes in land use and cover, usually over the long term, such as forest to row crop cultivation, or wetlands to urban settlement. The various estimates of these changes differ owing to the use of different metrics and measures and the uncertainties involved. Regardless, transformations are sizable as proportion of the ice-free land surface. If lands altered by human activity-lands retaining their base land cover but configured differently than in the ''wildland'' state-are included, a much larger estimate would result. Examples include degraded arid lands, pasture and grasslands invaded by or planted to exotic flora, and coadapted forests and grassland. Coadapted land covers are shaped and maintained by prolonged and repeated human activity, such as burning, that enlarges land use or land production: for example, annual burning that expands savanna grasses relative to woody species and enlarges food stocks for livestock and native grazers. ʈ As with estimates of land transformations and alterations, there is little doubt that human activity usurps a large proportion of terrestrial net primary productivity, but the uncertainty in the estimates remains large (16)

    Determinants of the geographic distribution of Puumala virus and Lyme borreliosis infections in Belgium

    Get PDF
    BACKGROUND: Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover and land use influence disease transmission by controlling both the spatial distribution of vectors or hosts, and the probability of contact with susceptible human populations. The objective of this study was to combine environmental and socio-economic factors to explain the spatial distribution of two emerging human diseases in Belgium, Puumala virus (PUUV) and Lyme borreliosis. Municipalities were taken as units of analysis. RESULTS: Negative binomial regressions including a correction for spatial endogeneity show that the spatial distribution of PUUV and Lyme borreliosis infections are associated with a combination of factors linked to the vector and host populations, to human behaviours, and to landscape attributes. Both diseases are associated with the presence of forests, which are the preferred habitat for vector or host populations. The PUUV infection risk is higher in remote forest areas, where the level of urbanisation is low, and among low-income populations. The Lyme borreliosis transmission risk is higher in mixed landscapes with forests and spatially dispersed houses, mostly in wealthy peri-urban areas. The spatial dependence resulting from a combination of endogenous and exogenous processes could be accounted for in the model on PUUV but not for Lyme borreliosis. CONCLUSION: A large part of the spatial variation in disease risk can be explained by environmental and socio-economic factors. The two diseases not only are most prevalent in different regions but also affect different groups of people. Combining these two criteria may increase the efficiency of information campaigns through appropriate targeting

    The role of household labour for sustainable intensification in smallholder systems: a case study in cocoa farming systems

    Get PDF
    Sustainable agricultural intensification aims at increasing yields on existing agricultural land without negative environmental impacts. Managing pests and diseases contributes to increasing yields. Without synthetic pesticides, this management is labour intensive. Smallholder farming systems heavily rely on manual and household labour, which will be affected by future demographic changes. Knowledge on how these changes will affect sustainable intensification is limited. Based on a case study of Ugandan cocoa farms, we tested the impact of increased household labour availability on pest and disease management (PDM) practices and pesticide use. We made use of a unique quasi-experimental design, in which household labour increased during the national COVID-19 lockdowns as children did not attend school and family members returned from cities. Our interview data from 2019 to 2021 showed that household labour availability increased on average by 0.8 (±2.5) household members and 16% of labour days per hectare. Using different regression models complemented with qualitative insights, we found that the uptake of alternative PDM practices significantly reduced pesticide quantities and expenditures. The implementation of alternative PDM practices was only weakly influenced by household labour availability and increased with farmer training and trust in alternative practices. These results imply that alternative PDM practices are an important pillar for production with little or without synthetic pesticides and their adoption requires support and incentives, especially on labour or resource-constrained farms

    Multi-level analyses of spatial and temporal determinants for dengue infection

    Get PDF
    BACKGROUND: Dengue is a mosquito-borne viral infection that is now endemic in most tropical countries. In Thailand, dengue fever/dengue hemorrhagic fever is a leading cause of hospitalization and death among children. A longitudinal study among 1750 people in two rural and one urban sites in northern Thailand from 2001 to 2003 studied spatial and temporal determinants for recent dengue infection at three levels (time, individual and household). METHODS: Determinants for dengue infection were measured by questionnaire, land-cover maps and GIS. IgM antibodies against dengue were detected by ELISA. Three-level multi-level analysis was used to study the risk determinants of recent dengue infection. RESULTS: Rates of recent dengue infection varied substantially in time from 4 to 30%, peaking in 2002. Determinants for recent dengue infection differed per site. Spatial clustering was observed, demonstrating variation in local infection patterns. Most of the variation in recent dengue infection was explained at the time-period level. Location of a person and the environment around the house (including irrigated fields and orchards) were important determinants for recent dengue infection. CONCLUSION: We showed the focal nature of asymptomatic dengue infections. The great variation of determinants for recent dengue infection in space and time should be taken into account when designing local dengue control programs

    Social dimensions of fertility behavior and consumption patterns in the Anthropocene.

    Get PDF
    We consider two aspects of the human enterprise that profoundly affect the global environment: population and consumption. We show that fertility and consumption behavior harbor a class of externalities that have not been much noted in the literature. Both are driven in part by attitudes and preferences that are not egoistic but socially embedded; that is, each household's decisions are influenced by the decisions made by others. In a famous paper, Garrett Hardin [G. Hardin, Science 162, 1243-1248 (1968)] drew attention to overpopulation and concluded that the solution lay in people "abandoning the freedom to breed." That human attitudes and practices are socially embedded suggests that it is possible for people to reduce their fertility rates and consumption demands without experiencing a loss in wellbeing. We focus on fertility in sub-Saharan Africa and consumption in the rich world and argue that bottom-up social mechanisms rather than top-down government interventions are better placed to bring about those ecologically desirable changes

    Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents

    Get PDF
    Funding: J.M.C., A.D.L., E.F.L., and E.A.M. were supported by a Stanford Woods Institute for the Environment—Environmental Ventures Program grant (PIs: E.A.M., A.D.L., and E.F.L.). E.A.M. was also supported by a Hellman Faculty Fellowship and a Terman Award. A.D.L., B.A.N., F.M.M., E.N.G.S., M.S.S., A.R.K., R.D., A.A., and H.N.N. were supported by a National Institutes of Health R01 grant (AI102918; PI: A.D.L.). E.A.M., A.M.S.I., and S.J.R. were supported by a National Science Foundation (NSF) Ecology and Evolution of Infectious Diseases (EEID) grant (DEB-1518681), and A.M.S.I. and S.J.R. were also supported by an NSF DEB RAPID grant (1641145). E.A.M. was also supported by a National Institute of General Medical Sciences Maximizing Investigators’ Research Award grant (R35GM133439) and an NSF and Fogarty International Center EEID grant (DEB-2011147).Climate drives population dynamics through multiple mechanisms, which can lead to seemingly context-dependent effects of climate on natural populations. For climate-sensitive diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in different contexts. Here we show that a model, parameterized with laboratory measured climate-driven mosquito physiology, captures three key epidemic characteristics across ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and duration of outbreaks. The model generates a range of disease dynamics consistent with observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with variable accuracy (28-85% for vectors, 44-88% for incidence). The model predicted vector dynamics better in sites with a smaller proportion of young children in the population, lower mean temperature, and homes with piped water and made of cement. Models with limited calibration that robustly capture climate-virus relationships can help guide intervention efforts and climate change disease projections.Publisher PDFPeer reviewe

    The Dispersal Ecology of Rhodesian Sleeping Sickness Following Its Introduction to a New Area

    Get PDF
    Tsetse-transmitted human and animal trypanosomiasis are constraints to both human and animal health in sub-Saharan Africa, and although these diseases have been known for over a century, there is little recent evidence demonstrating how the parasites circulate in natural hosts and ecosystems. The spread of Rhodesian sleeping sickness (caused by Trypanosoma brucei rhodesiense) within Uganda over the past 15 years has been linked to the movement of infected, untreated livestock (the predominant reservoir) from endemic areas. However, despite an understanding of the environmental dependencies of sleeping sickness, little research has focused on the environmental factors controlling transmission establishment or the spatially heterogeneous dispersal of disease following a new introduction. In the current study, an annually stratified case-control study of Rhodesian sleeping sickness cases from Serere District, Uganda was used to allow the temporal assessment of correlations between the spatial distribution of sleeping sickness and landscape factors. Significant relationships were detected between Rhodesian sleeping sickness and selected factors, including elevation and the proportion of land which was “seasonally flooding grassland” or “woodlands and dense savannah.” Temporal trends in these relationships were detected, illustrating the dispersal of Rhodesian sleeping sickness into more ‘suitable’ areas over time, with diminishing dependence on the point of introduction in concurrence with an increasing dependence on environmental and landscape factors. These results provide a novel insight into the ecology of Rhodesian sleeping sickness dispersal and may contribute towards the implementation of evidence-based control measures to prevent its further spread
    • 

    corecore