438 research outputs found
Abstract Tensor Systems as Monoidal Categories
The primary contribution of this paper is to give a formal, categorical
treatment to Penrose's abstract tensor notation, in the context of traced
symmetric monoidal categories. To do so, we introduce a typed, sum-free version
of an abstract tensor system and demonstrate the construction of its associated
category. We then show that the associated category of the free abstract tensor
system is in fact the free traced symmetric monoidal category on a monoidal
signature. A notable consequence of this result is a simple proof for the
soundness and completeness of the diagrammatic language for traced symmetric
monoidal categories.Comment: Dedicated to Joachim Lambek on the occasion of his 90th birthda
Permutative categories, multicategories, and algebraic K-theory
We show that the -theory construction of arXiv:math/0403403, which
preserves multiplicative structure, extends to a symmetric monoidal closed
bicomplete source category, with the multiplicative structure still preserved.
The source category of arXiv:math/0403403, whose objects are permutative
categories, maps fully and faithfully to the new source category, whose objects
are (based) multicategories
Introduction to Categories and Categorical Logic
The aim of these notes is to provide a succinct, accessible introduction to
some of the basic ideas of category theory and categorical logic. The notes are
based on a lecture course given at Oxford over the past few years. They contain
numerous exercises, and hopefully will prove useful for self-study by those
seeking a first introduction to the subject, with fairly minimal prerequisites.
The coverage is by no means comprehensive, but should provide a good basis for
further study; a guide to further reading is included. The main prerequisite is
a basic familiarity with the elements of discrete mathematics: sets, relations
and functions. An Appendix contains a summary of what we will need, and it may
be useful to review this first. In addition, some prior exposure to abstract
algebra - vector spaces and linear maps, or groups and group homomorphisms -
would be helpful.Comment: 96 page
Constructing applicative functors
Applicative functors define an interface to computation that is more general, and correspondingly weaker, than that of monads. First used in parser libraries, they are now seeing a wide range of applications. This paper sets out to explore the space of non-monadic applicative functors useful in programming. We work with a generalization, lax monoidal functors, and consider several methods of constructing useful functors of this type, just as transformers are used to construct computational monads. For example, coends, familiar to functional programmers as existential types, yield a range of useful applicative functors, including left Kan extensions. Other constructions are final fixed points, a limited sum construction, and a generalization of the semi-direct product of monoids. Implementations in Haskell are included where possible
Variable binding, symmetric monoidal closed theories, and bigraphs
This paper investigates the use of symmetric monoidal closed (SMC) structure
for representing syntax with variable binding, in particular for languages with
linear aspects. In our setting, one first specifies an SMC theory T, which may
express binding operations, in a way reminiscent from higher-order abstract
syntax. This theory generates an SMC category S(T) whose morphisms are, in a
sense, terms in the desired syntax. We apply our approach to Jensen and
Milner's (abstract binding) bigraphs, which are linear w.r.t. processes. This
leads to an alternative category of bigraphs, which we compare to the original.Comment: An introduction to two more technical previous preprints. Accepted at
Concur '0
The String-Meaning Relations Definable by Lambek Grammars and Context-Free Grammars
International audienceWe show that the class of string-meaning relations definable by the following two types of grammars coincides: (i) Lambek grammars where each lexical item is assigned a (suitably typed) lambda term as a representation of its meaning, and the meaning of a sentence is computed according to the lambda- term corresponding to its derivation; and (ii) cycle-free context-free grammars that do not generate the empty string where each rule is associated with a (suitably typed) lambda term that specifies how the meaning of a phrase is determined by the meanings of its immediate constituents
The Grail theorem prover: Type theory for syntax and semantics
As the name suggests, type-logical grammars are a grammar formalism based on
logic and type theory. From the prespective of grammar design, type-logical
grammars develop the syntactic and semantic aspects of linguistic phenomena
hand-in-hand, letting the desired semantics of an expression inform the
syntactic type and vice versa. Prototypical examples of the successful
application of type-logical grammars to the syntax-semantics interface include
coordination, quantifier scope and extraction.This chapter describes the Grail
theorem prover, a series of tools for designing and testing grammars in various
modern type-logical grammars which functions as a tool . All tools described in
this chapter are freely available
The Lambek calculus with iteration: two variants
Formulae of the Lambek calculus are constructed using three binary
connectives, multiplication and two divisions. We extend it using a unary
connective, positive Kleene iteration. For this new operation, following its
natural interpretation, we present two lines of calculi. The first one is a
fragment of infinitary action logic and includes an omega-rule for introducing
iteration to the antecedent. We also consider a version with infinite (but
finitely branching) derivations and prove equivalence of these two versions. In
Kleene algebras, this line of calculi corresponds to the *-continuous case. For
the second line, we restrict our infinite derivations to cyclic (regular) ones.
We show that this system is equivalent to a variant of action logic that
corresponds to general residuated Kleene algebras, not necessarily
*-continuous. Finally, we show that, in contrast with the case without division
operations (considered by Kozen), the first system is strictly stronger than
the second one. To prove this, we use a complexity argument. Namely, we show,
using methods of Buszkowski and Palka, that the first system is -hard,
and therefore is not recursively enumerable and cannot be described by a
calculus with finite derivations
Perverse coherent t-structures through torsion theories
Bezrukavnikov (later together with Arinkin) recovered the work of Deligne
defining perverse -structures for the derived category of coherent sheaves
on a projective variety. In this text we prove that these -structures can be
obtained through tilting torsion theories as in the work of Happel, Reiten and
Smal\o. This approach proves to be slightly more general as it allows us to
define, in the quasi-coherent setting, similar perverse -structures for
certain noncommutative projective planes.Comment: New revised version with important correction
- …