497 research outputs found
Capillary-Gravity Waves on Depth-Dependent Currents: Consequences for the Wave Resistance
We study theoretically the capillary-gravity waves created at the water-air
interface by a small two-dimensional perturbation when a depth-dependent
current is initially present in the fluid. Assuming linear wave theory, we
derive a general expression of the wave resistance experienced by the
perturbation as a function of the current profile in the case of an inviscid
fluid. We then analyze and discuss in details the behavior of the wave
resistance in the particular case of a linear current, a valid approximation
for some wind generated currents.Comment: Submitted to EP
Capillary-gravity waves: The effect of viscosity on the wave resistance
The effect of viscosity on the wave resistance experienced by a 2d
perturbation moving at uniform velocity over the free surface of a fluid is
investigated. The analysis is based on Rayleigh's linearized theory of
capillary-gravity waves. It is shown in particular that the wave resistance
remains bounded as the velocity of the perturbation approches the minimun phase
speed, unlike what is predicted by the inviscid theory.Comment: Europhysics Letters, in pres
TADPOL: A 1.3 mm Survey of Dust Polarization in Star-forming Cores and Regions
We present {\lambda}1.3 mm CARMA observations of dust polarization toward 30
star-forming cores and 8 star-forming regions from the TADPOL survey. We show
maps of all sources, and compare the ~2.5" resolution TADPOL maps with ~20"
resolution polarization maps from single-dish submillimeter telescopes. Here we
do not attempt to interpret the detailed B-field morphology of each object.
Rather, we use average B-field orientations to derive conclusions in a
statistical sense from the ensemble of sources, bearing in mind that these
average orientations can be quite uncertain. We discuss three main findings:
(1) A subset of the sources have consistent magnetic field (B-field)
orientations between large (~20") and small (~2.5") scales. Those same sources
also tend to have higher fractional polarizations than the sources with
inconsistent large-to-small-scale fields. We interpret this to mean that in at
least some cases B-fields play a role in regulating the infall of material all
the way down to the ~1000 AU scales of protostellar envelopes. (2) Outflows
appear to be randomly aligned with B-fields; although, in sources with low
polarization fractions there is a hint that outflows are preferentially
perpendicular to small-scale B-fields, which suggests that in these sources the
fields have been wrapped up by envelope rotation. (3) Finally, even at ~2.5"
resolution we see the so-called "polarization hole" effect, where the
fractional polarization drops significantly near the total intensity peak. All
data are publicly available in the electronic edition of this article.Comment: 53 pages, 37 figures -- main body (13 pp., 3 figures), source maps
(32 pp., 34 figures), source descriptions (8 pp.). Accepted by the
Astrophysical Journal Supplemen
A Resolved Ring of Debris Dust around the Solar Analog HD 107146
We present resolved images of the dust continuum emission from the debris disk around the young (80-200 Myr) solar-type star HD 107146 with CARMA at λ = 1.3 mm and the CSO at λ = 350 μ. Both images show that the dust emission extends over an approximately 10" diameter region. The high-resolution (3") CARMA image further reveals that the dust is distributed in a partial ring with significant decrease in a flux inward of 97 AU. Two prominent emission peaks appear within the ring separated by ~140° in the position angle. The morphology of the dust emission is suggestive of dust captured into a mean motion resonance, which would imply the presence of a planet at an orbital radius of ~45-75 AU
The power of interdependence: Linking health systems, communities, and health professions educational programs to better meet the needs of patients and populations
Promoting optimal health outcomes for diverse patients and populations requires the acknowledgement and strengthening of interdependent relationships between health professions education programs, health systems, and the communities they serve. Educational programs must recognize their role as integral components of a larger system. Educators must strive to break down silos and synergize efforts to foster a health care workforce positioned for collaborative, equitable, community-oriented practice. Sharing interprofessional and interinstitutional strategies can foster wide propagation of educational innovation while accommodating local contexts. This paper outlines how member schools of the American Medical Association Accelerating Change in Medical Education Consortium leveraged interdependence to accomplish transformative innovations catalyzed by systems thinking and a community of innovation
Atmospheric phase correction using CARMA-PACS: high angular resolution observations of the FU Orionis star PP 13S*
We present 0".15 resolution observations of the 227 GHz continuum emission from the circumstellar disk around
the FU Orionis star PP 13S*. The data were obtained with the Combined Array for Research in Millimeter-wave
Astronomy (CARMA) Paired Antenna Calibration System (C-PACS), which measures and corrects the atmospheric
delay fluctuations on the longest baselines of the array in order to improve the sensitivity and angular resolution of
the observations. A description of the C-PACS technique and the data reduction procedures are presented. C-PACS
was applied to CARMA observations of PP 13S*, which led to a factor of 1.6 increase in the observed peak flux
of the source, a 36% reduction in the noise of the image, and a 52% decrease in the measured size of the source
major axis. The calibrated complex visibilities were fitted with a theoretical disk model to constrain the disk surface
density. The total disk mass from the best-fit model corresponds to 0.06 M_⊙, which is larger than the median mass of a disk around a classical T Tauri star. The disk is optically thick at a wavelength of 1.3 mm for orbital radii less than 48 AU. At larger radii, the inferred surface density of the PP 13S* disk is an order of magnitude lower than that needed to develop a gravitational instability
1.3 mm Wavelength VLBI of Sagittarius A*: Detection of Time-Variable Emission on Event Horizon Scales
Sagittarius A*, the ~4 x 10^6 solar mass black hole candidate at the Galactic
Center, can be studied on Schwarzschild radius scales with (sub)millimeter
wavelength Very Long Baseline Interferometry (VLBI). We report on 1.3 mm
wavelength observations of Sgr A* using a VLBI array consisting of the JCMT on
Mauna Kea, the ARO/SMT on Mt. Graham in Arizona, and two telescopes of the
CARMA array at Cedar Flat in California. Both Sgr A* and the quasar calibrator
1924-292 were observed over three consecutive nights, and both sources were
clearly detected on all baselines. For the first time, we are able to extract
1.3 mm VLBI interferometer phase information on Sgr A* through measurement of
closure phase on the triangle of baselines. On the third night of observing,
the correlated flux density of Sgr A* on all VLBI baselines increased relative
to the first two nights, providing strong evidence for time-variable change on
scales of a few Schwarzschild radii. These results suggest that future VLBI
observations with greater sensitivity and additional baselines will play a
valuable role in determining the structure of emission near the event horizon
of Sgr A*.Comment: 8 pages, submitted to ApJ
- …