8,816 research outputs found

    Evidence Against an Association Between Gamma-Ray Bursts and Type I Supernovae

    Get PDF
    We present a rigorous method, based on Bayesian inference, for calculating the odds favoring the hypothesis that any particular class of astronomical transients produce gamma-ray bursts over the hypothesis that they do not. We then apply this method to a sample of 83 Type Ia supernovae and a sample of 20 Type Ib-Ic supernovae. We find overwhelming odds against the hypothesis that all Type Ia supernovae produce gamma-ray bursts, whether at low redshift (109:110^{9}:1) or high-redshift (1012:110^{12}:1), and very large odds (6000:16000:1) against the hypothesis that all Type Ib, Ib/c, and Ic supernovae produce observable gamma-ray bursts. We find large odds (34:134:1) against the hypothesis that a fraction of Type Ia supernovae produce observable gamma-ray bursts, and moderate odds (6:16:1) against the hypothesis that a fraction of Type Ib-Ic supernovae produce observable bursts. We have also re-analyzed both a corrected version of the Wang & Wheeler sample of Type Ib-Ic SNe and our larger sample of 20 Type Ib-Ic SNe, using a generalization of their frequentist method. We find no significant evidence in either case of a correlation between Type Ib-Ic SNe and GRBs, consistent with the very strong evidence against such a correlation that we find from our Bayesian analysis.Comment: 45 pages, 2 PostScript figures. Uses AASTEX macros. Submitted to The Astrophysical Journa

    Coherent vibrations of submicron spherical gold shells in a photonic crystal

    Full text link
    Coherent acoustic radial oscillations of thin spherical gold shells of submicron diameter excited by an ultrashort optical pulse are observed in the form of pronounced modulations of the transient reflectivity on a subnanosecond time scale. Strong acousto-optical coupling in a photonic crystal enhances the modulation of the transient reflectivity up to 4%. The frequency of these oscillations is demonstrated to be in good agreement with Lamb theory of free gold shells.Comment: Error in Eqs.2 and 3 corrected; Tabl. I corrected; Fig.1 revised; a model that explains the dependence of the oscillation amplitude of the transient reflectivity with wavelength adde

    Proton imaging of stochastic magnetic fields

    Full text link
    Recent laser-plasma experiments report the existence of dynamically significant magnetic fields, whose statistical characterisation is essential for understanding the physical processes these experiments are attempting to investigate. In this paper, we show how a proton imaging diagnostic can be used to determine a range of relevant magnetic field statistics, including the magnetic-energy spectrum. To achieve this goal, we explore the properties of an analytic relation between a stochastic magnetic field and the image-flux distribution created upon imaging that field. We conclude that features of the beam's final image-flux distribution often display a universal character determined by a single, field-scale dependent parameter - the contrast parameter - which quantifies the relative size of the correlation length of the stochastic field, proton displacements due to magnetic deflections, and the image magnification. For stochastic magnetic fields, we establish the existence of four contrast regimes - linear, nonlinear injective, caustic and diffusive - under which proton-flux images relate to their parent fields in a qualitatively distinct manner. As a consequence, it is demonstrated that in the linear or nonlinear injective regimes, the path-integrated magnetic field experienced by the beam can be extracted uniquely, as can the magnetic-energy spectrum under a further statistical assumption of isotropy. This is no longer the case in the caustic or diffusive regimes. We also discuss complications to the contrast-regime characterisation arising for inhomogeneous, multi-scale stochastic fields, as well as limitations currently placed by experimental capabilities on extracting magnetic field statistics. The results presented in this paper provide a comprehensive description of proton images of stochastic magnetic fields, with applications for improved analysis of given proton-flux images.Comment: Main paper pp. 1-29; appendices pp. 30-84. 24 figures, 2 table

    Could Fire and Rescue Services identify older people at risk of falls?

    Get PDF
    Protecting or improving the efficiency and effectiveness of services while reducing costs in response to public sector funding reductions is a significant challenge for all public service organisations. Preventing falls in older people is a major public health objective. We propose here an innovative model of community partnership with Fire and Rescue Services assisting falls prevention services to enhance the safety and well-being of older people in local communities through early identification of those who are at risk of injury from a fall or accidental domestic fire

    Poincare' normal forms and simple compact Lie groups

    Full text link
    We classify the possible behaviour of Poincar\'e-Dulac normal forms for dynamical systems in RnR^n with nonvanishing linear part and which are equivariant under (the fundamental representation of) all the simple compact Lie algebras and thus the corresponding simple compact Lie groups. The ``renormalized forms'' (in the sense of previous work by the author) of these systems is also discussed; in this way we are able to simplify the classification and moreover to analyze systems with zero linear part. We also briefly discuss the convergence of the normalizing transformations.Comment: 17 pages; minor corrections in revised versio

    Lowest Landau-level description of a Bose-Einstein condensate in a rapidly rotating anisotropic trap

    Full text link
    A rapidly rotating Bose-Einstein condensate in a symmetric two-dimensional trap can be described with the lowest Landau-level set of states. In this case, the condensate wave function psi(x,y) is a Gaussian function of r^2 = x^2 + y^2, multiplied by an analytic function P(z) of the single complex variable z= x+ i y; the zeros of P(z) denote the positions of the vortices. Here, a similar description is used for a rapidly rotating anisotropic two-dimensional trap with arbitrary anisotropy (omega_x/omega_y le 1). The corresponding condensate wave function psi(x,y) has the form of a complex anisotropic Gaussian with a phase proportional to xy, multiplied by an analytic function P(zeta), where zeta is proportional to x + i beta_- y and 0 le beta_- le 1 is a real parameter that depends on the trap anisotropy and the rotation frequency. The zeros of P(zeta) again fix the locations of the vortices. Within the set of lowest Landau-level states at zero temperature, an anisotropic parabolic density profile provides an absolute minimum for the energy, with the vortex density decreasing slowly and anisotropically away from the trap center.Comment: 13 pages, 1 figur

    Massive particles in acoustic space-times emergent inertia and passive gravity

    Full text link
    I show that massive-particle dynamics can be simulated by a weak, spherical, external perturbation on a potential flow in an ideal fluid. The effective Lagrangian is of the form mc^2L(U^2/c^2), where U is the velocity of the particle relative to the fluid and c the speed of sound. This can serve as a model for emergent relativistic inertia a la Mach's principle with m playing the role of inertial mass, and also of analog gravity where it is also the passive gravitational mass. m depends on the particle type and intrinsic structure, while L is universal: For D dimensional particles L is proportional to the hypergeometric function F(1,1/2;D/2;U^2/c^2). Particles fall in the same way in the analog gravitational field independent of their internal structure, thus satisfying the weak equivalence principle. For D less or equal 5 they all have a relativistic limit with the acquired energy and momentum diverging as U approaches c. For D less or equal 7 the null geodesics of the standard acoustic metric solve our equation of motion. Interestingly, for D=4 the dynamics is very nearly Lorentzian. The particles can be said to follow the geodesics of a generalized acoustic metric of a Finslerian type that shares the null geodesics with the standard acoustic metric. In vortex geometries, the ergosphere is automatically the static limit. As in the real world, in ``black hole'' geometries circular orbits do not exist below a certain radius that occurs outside the horizon. There is a natural definition of antiparticles; and I describe a mock particle vacuum in whose context one can discuss, e.g., particle Hawking radiation near event horizons.Comment: 15 page: version published in Physical Review

    Validity of a pictorial perceived exertion scale for effort estimation and effort production during stepping exercise in adolescent children

    Get PDF
    This is the author's PDF version of an article published in European Physical Education Review ©2002. The definitive version is available at http://epe.sagepub.com.Recent developments in the study of paediatric effort perception have continued to emphasise the importance of child-specific rating scales. The purpose of this study was to examine the validity of an illustrated 1 – 10 perceived exertion scale; the Pictorial Children’s Effort Rating Table (PCERT). 4 class groups comprising 104 children; 27 boys and 29 girls, aged 12.1±0.3 years and 26 boys, 22 girls, aged 15.3±0.2 years were selected from two schools and participated in the initial development of the PCERT. Subsequently, 48 of these children, 12 boys and 12 girls from each age group were randomly selected to participate in the PCERT validation study. Exercise trials were divided into 2 phases and took place 7 to 10 days apart. During phase 1, children completed 5 x 3-minute incremental stepping exercise bouts interspersed with 2-minute recovery periods. Heart rate (HR) and ratings of exertion were recorded during the final 15 s of each exercise bout. In phase 2 the children were asked to regulate their exercising effort during 4 x 4-minute bouts of stepping so that it matched randomly prescribed PCERT levels (3, 5, 7 and 9). Analysis of data from Phase 1 yielded significant (P<0.01) relationships between perceived and objective (HR) effort measures for girls. In addition, the main effects of exercise intensity on perceived exertion and HR were significant (P<0.01); perceived exertion increased as exercise intensity increased and this was reflected in simultaneous significant rises in HR. During phase 2, HR and estimated power output (POapprox) produced at each of the four prescribed effort levels were significantly different (P<0.01). The children in this study were able to discriminate between 4 different exercise intensities and regulate their exercise intensity according to 4 prescribed levels of perceived exertion. In seeking to contribute towards children’s recommended physical activity levels and helping them understand how to self-regulate their activity, the application of the PCERT within the context of physical education is a desirable direction for future research
    • …
    corecore