781 research outputs found
Redefining Performance Evaluation Tools for Real-Time QRS Complex Classification Systems
International audienceIn a heartbeat classification procedure, the detection of QRS complex waveforms is necessary. In many studies, this heartbeat extraction function is not considered: the inputs of the classifier are assumed to be correctly identified. This paper aims to redefine classical performance evaluation tools in entire QRS complex classification systems and to evaluate the effects induced by QRS detection errors on the performance of a heartbeat classification processing (normal vs abnormal). Performance statistics are given and discussed considering the MIT/BIH database records that are replayed on a real-time classification system imposed of the classical detector proposed by Hamilton & Tompkins, followed by a neural network classifier. This study shows that a classification accuracy of 96.72% falls to 94.90% when a drop of 1.78% error rate is introduced in the detector quality. This corresponds an increase of about 50% bad classifications
Analytic Aesthetics
Peer reviewe
A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models
A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO2) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO2 yr−1. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set
4D Visualization of the Left Ventricle, Using a Rotating Ultrasound Probe During 4 Cardiac Cycles
A new type of external ultrasound probe is proposed to visualize dynamically the left-ventricular three-dimensional deformations. This probe acquires successive apical long axis cross sections by rotating continuously around its axis (one or two rotations per cardiac cycle). From the set of one hundred images obtained during only four consecutive heart beats the volume is reconstructed. In the present development phase, segmentation is performed manually, but supervised in order to guarantee a coherent set of contours. Experimental validations on regular cardiac cycles have been made on a patient fitted with pacemaker. The results obtained are promising
The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models
We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from -0.4 to + 0.7 W/m(2) over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from -30 to + 50 mW/m(2) for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m(2) within the entire troposphere
Climate forcing and air quality change due to regional emissions reductions by economic sector
We examine the air quality (AQ) and radiative forcing (RF) response to emissions reductions by economic sector for North America and developing Asia in the CAM and GISS composition/climate models. Decreases in annual average surface particulate are relatively robust, with intermodel variations in magnitude typically <30% and very similar spatial structure. Surface ozone responses are small and highly model dependent. The largest net RF results from reductions in emissions from the North America industrial/power and developing Asia domestic fuel burning sectors. Sulfate reductions dominate the first case, for which intermodel variations in the sulfate (or total) aerosol optical depth (AOD) responses are ~30% and the modeled spatial patterns of the AOD reductions are highly correlated (R=0.9). Decreases in BC dominate the developing Asia domestic fuel burning case, and show substantially greater model-to-model differences. Intermodel variations in tropospheric ozone burden changes are also large, though aerosol changes dominate those cases with substantial net climate forcing. The results indicate that across-the-board emissions reductions in domestic fuel burning in developing Asia and in surface transportation in North America are likely to offer the greatest potential for substantial, simultaneous improvement in local air quality and near-term mitigation of global climate change via short-lived species. Conversely, reductions in industrial/power emissions have the potential to accelerate near-term warming, though they would improve AQ and have a long-term cooling effect on climate. These broad conclusions appear robust to intermodel differences
Recommended from our members
Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models
We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions
from China. We find that the models differ by up to a factor of six in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that
results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a
near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating th at total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against observations
Stratospheric Dynamical Response and Ozone Feedbacks in the Presence of SO_2 Injections
Injections of sulfur dioxide into the stratosphere are among several proposed methods of solar radiation management. Such injections could cool the Earth's climate. However, they would significantly alter the dynamics of the stratosphere. We explore here the stratospheric dynamical response to sulfur dioxide injections ∼5 km above the tropopause at multiple latitudes (equator, 15°S, 15°N, 30°S and 30°N) using a fully coupled Earth system model, Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model as its atmospheric component (CESM1(WACCM)). We find that in all simulations, the tropical lower stratosphere warms primarily between 30°S and 30°N, regardless of injection latitude. The quasi-biennial oscillation (QBO) of the tropical zonal wind is altered by the various sulfur dioxide injections. In a simulation with a 12 Tg yr^(−1) equatorial injection, and with fully interactive chemistry, the QBO period lengthens to ∼3.5 years but never completely disappears. However, in a simulation with specified (or noninteractive) chemical fields, including O_3 and prescribed aerosols taken from the interactive simulation, the oscillation is virtually lost. In addition, we find that geoengineering does not always lengthen the QBO. We further demonstrate that the QBO period changes from 24 to 12–17 months in simulations with sulfur dioxide injections placed poleward of the equator. Our study points to the importance of understanding and verifying of the complex interactions between aerosols, atmospheric dynamics, and atmospheric chemistry as well as understanding the effects of sulfur dioxide injections placed away from the Equator on the QBO
Sensitivity of Aerosol Distribution and Climate Response to Stratospheric SO_2 Injection Locations
Injection of SO_2 into the stratosphere has been proposed as a method to, in part, counteract anthropogenic climate change. So far, most studies investigated injections at the equator or in a region in the tropics. Here we use Community Earth System Model version 1 Whole Atmosphere Community Climate Model (CESM1(WACCM)) to explore the impact of continuous single grid point SO_2 injections at seven different latitudes and two altitudes in the stratosphere on aerosol distribution and climate. For each of the 14 locations, 3 different constant SO_2 emission rates were tested to identify linearity in aerosol burden, aerosol optical depth, and climate effects. We found that injections at 15°N and 15°S and at 25 km altitude have equal or greater effect on radiation and surface temperature than injections at the equator. Nonequatorial injections transport SO_2 and sulfate aerosols more efficiently into middle and high latitudes and result in particles of smaller effective radius and larger aerosol burden in middle and high latitudes. Injections at 15°S produce the largest increase in global average aerosol optical depth and increase the change in radiative forcing per Tg SO_2/yr by about 15% compared to equatorial injections. High-altitude injections at 15°N produce the largest reduction in global average temperature of 0.2° per Tg S/yr for the last 7 years of a 10 year experiment. Injections at higher altitude are generally more efficient at reducing surface temperature, with the exception of large equatorial injections of at least 12 Tg SO_2/yr. These findings have important implications for designing a strategy to counteract global climate change
- …