44 research outputs found

    Biotransformation of halogenated compounds by lyophilized cells of Rhodococcus erythropolis in a continuous solid-gas biofilter

    Get PDF
    The irreversible hydrolysis of 1-chlorobutane to 1-butanol and HCl by lyophilized cells of Rhodococcus erythropolis NCIMB 13064, using a solid–gas biofilter, is described as a model reaction. 1-Chlorobutane is hydrolyzed by the haloalkane dehalogenase from R. erythropolis. A critical water thermodynamic activity (aw ) of 0.4 is necessary for the enzyme to become active and optimal dehalogenase activity for the lyophilized cells is obtained for a aw of 0.9. A temperature of reaction of 40 ◩ C represents the best compromise between stability and activity. The activation energy of the reaction was determined and found equal to 59.5 kJ/mol. The absence of internal diffusional limitation of substrates in the biofilter was observed. The apparent Michaelis–Menten constants Km and Vmax for the lyophilized cells of R. erythropolis were 0.011 (1-chlorobutane thermodynamic activity, aClBut ) and 3.22 ”moles/min g of cell, respectively. The activity and stability of lyophilized cells were dependent on the quantity of HCl produced. Since possible modifications of local pH by the HCl product, pH control by the addition of volatile Lewis base (triethylamine) in the gaseous phase was employed. Triethylamine plays the role of a volatile buffer that controls local pH and the ionization state of the dehalogenase and prevents inhibition by Cl− . Finally, cells broken by the action of the lysozyme, were more stable than intact cells and more active. An initial reaction rate equal to 4.5 ”moles/min g of cell was observed

    Bioremediation of halogenated compounds: comparison of dehalogenating bacteria and improvement of catalyst stability

    Get PDF
    Five bacterial strains were compared for halogenated compounds conversion in aqueous media. Depending on the strain, the optimal temperature for dehalogenase activity of resting cells varied from 30 to 45 degrees C, while optimal pH raised from 8.4 to 9.0. The most effective dehalogenase activity for 1 chlorobutane conversion was detected with Rhodococcus erythropolis NCIMB13064 and Escherichia coli BL21 (DE3) (DhaA). The presence of 2-chlorobutane or propanal in the aqueous media could inhibit the 1-chlorobutane transformation

    Coupled oxidation–reduction of butanol–hexanal by resting Rhodococcus erythropolis NCIMB 13064 cells in liquid and gas phases

    Get PDF
    Rhodococcus erythropolis is a promising Gram-positive bacterium capable of numerous bioconversions including those involving alcohol dehydrogenases (ADHs). In this work, we compared and optimized the redox biocatalytic performances of 1-butanol-grown R. erythropolis NCIMB 13064 cells in aqueous and in non-conventional gas phase using the 1-butanol–hexanal oxidation–reduction as model reaction. Oxidation of 1-butanol to butanal is tightly coupled to the reduction of hexanal to 1-hexanol at the level of a nicotinoprotein–ADH-like enzyme. Cell viability is dispensable for reaction. In aqueous batch conditions, fresh and lyophilized cells are efficient redox catalysts (oxidation–reduction rate = 76 micromol min−1 g cell dry mass−1) being also reactive towards benzyl alcohol, (S)-2-pentanol, and geraniol as reductants. However, butanol hexanal oxidation–reduction is strongly limited by product accumulation and by hexanal toxicity that is amajor factor influencing cell behavior and performance. Reaction rate is maximal at 40 ◩C pH 7.0 in aqueous phase and at 60 ◩C- pH 7.0–9.0 in gas phase. Importantly, lyophilized cells also showed to be promising redox catalysts in the gas phase (at least 65 micromol min−1 g cell dry mass−1). The system is notably stable for several days at moderate thermodynamic activities of hexanal (0.06–0.12), 1-butanol (0.12) and water (0.7)

    1. L’eau, un bien commun Ă  comprendre pour mieux le prĂ©server

    No full text
    L'eau est une ressource fragile et limitĂ©e, mĂȘme si elle semble omniprĂ©sente. Plus de 70 % de la surface de la Terre est recouverte d’eau, mais 97 % de cette eau est salĂ©e et seulement 3 % est douce, et 75 % de cette eau douce est stockĂ©e sous forme solide (glaciers et calottes polaires). L’accĂšs Ă  l’eau constitue l’un des principaux enjeux du futur, que ce soit pour l’agriculture, l’industrie, l’hygiĂšne ou l’alimentation. Car, si pour bon nombre d’entre nous elle semble ĂȘtre une ressource to..

    Etude de la réaction d'oxydo-réduction catalysée par l'acool déshydrogénase de la levure Saccharomyces cerevisiae en réacteur solide/gaz

    No full text
    La mise en Ɠuvre de la levure Saccharomyces cerevisiae pour rĂ©aliser des rĂ©actions d'oxydo-rĂ©duction catalysĂ©es par l'ADH en rĂ©acteur solide/gaz constitue une alternative intĂ©ressante comparativement Ă  l'utilisation d'enzymes isolĂ©es. Dans ce systĂšme, la rĂ©gĂ©nĂ©ration, in situ, du cofacteur nicotinamidique est rĂ©alisĂ©e grĂące Ă  l'apport d'un alcool co-substrat ; l'utilisation des cellules entiĂšres permet un gain de stabilitĂ© non nĂ©gligeable que nous avons mis Ă  profit pour la synthĂšse d'alcools et/ou d'aldĂ©hydes par le procĂ©dĂ© de biocatalyse solide/gaz. L'activitĂ© catalytique de l'ADH de cellules entiĂšres a pu ĂȘtre augmentĂ©e en limitant les contraintes diffusionnelles aprĂšs un simple traitement des cellules aux ultrasons. La stabilitĂ© du catalyseur a ensuite pu ĂȘtre amĂ©liorĂ©e en Ă©liminant les enzymes libĂ©rĂ©es dans le surnageant aprĂšs traitement. L'activitĂ© de l'ADH de cette prĂ©paration ainsi que sa stabilitĂ© en rĂ©action dĂ©pendent des activitĂ©s thermodynamiques des substrats utilisĂ©s et de l'eau dans le mĂ©lange gazeux. En effet, pour de fortes activitĂ©s, le butyraldĂ©hyde et l'Ă©thanol possĂšdent un effet dĂ©naturant important ; cet effet peut cependant ĂȘtre attĂ©nuĂ© en diminuant l'activitĂ© de l'eau du systĂšme. L'utilisation de faibles aw mĂȘme si elle entraĂźne un abaissement de la vitesse initiale de la rĂ©action, permet cependant de maintenir le niveau de productivitĂ© du systĂšme proche de 1,7 kg/l/jour en butanol pour la rĂ©action modĂšle considĂ©rĂ©e. Le systĂšme a encore pu ĂȘtre optimisĂ©, en jouant sur les conditions de culture des levures. Il a Ă©tĂ© montrĂ© que la principale isoenzyme impliquĂ©e dans la rĂ©action d'oxydo-rĂ©duction est YADH-II. La production de YADH-II est favorisĂ©e en cultivant les cellules sur de l'Ă©thanol, ce qui a permis d'augmenter le niveau d'activitĂ© de l'enzyme en rĂ©acteur solide/gaz lors de l'Ă©tape de prĂ©paration du biocatalyseur.LA ROCHELLE-BU (173002101) / SudocSudocFranceF

    Etude du devenir des substrats et produits de réaction de la lipoxygénase en milieu biphasique/bienzymatique en vue de la mise au point d'un procédé de valorisation d'huile végétale

    No full text
    Cette Ă©tude a montrĂ© qu il Ă©tait possible de produire des hydropĂ©roxydes d acides gras en milieu biphasique grĂące au couplage d une lipase et d une lipoxygĂ©nase, Ă  partir d huile vĂ©gĂ©tale pure. Un certain nombre de paramĂštres ont pu ĂȘtre estimĂ©s aussi bien pour les acides gras polyinsaturĂ©s que pour leurs hydropĂ©roxydes correspondants, et l Ă©tude s est notamment focalisĂ©s sur leurs propriĂ©tĂ©s de partition entre les phases des systĂšmes testĂ©s. Un certain nombre de modĂšles expĂ©rimentaux biphasiques ont Ă©tĂ© proposĂ©s dans cette Ă©tude, et l activitĂ© des diffĂ©rentes enzymes a pu ĂȘtre Ă©tudiĂ©e dans chacun d entre eux. Des comportements trĂšs variables ont pu ĂȘtre constatĂ©s d un systĂšme Ă  l autre. La qualitĂ© de l interface sous l effet des contraintes induites par l agitation ou le recyclage constitue la clĂ© de l efficacitĂ© des systĂšmes biphasiques testĂ©s. L ajout de protĂ©ines dans le milieu ainsi que l accumulation interfaciale d AGL et/ou d HPO ont un effet sur la structuration de l interface et donc sur l accessibilitĂ© des enzymes Ă  leurs substrats. Ce travail prĂ©sente le dĂ©veloppement de mĂ©thodes, permettant que quantifier au plus prĂšs le devenir des produits et substrats des diffĂ©rentes rĂ©actions testĂ©es, dans le but de dĂ©finir Ă  terme de nouveaux procĂ©dĂ©s plus Ă©cologiques concernant la valorisation d huiles vĂ©gĂ©tales naturelles.In this study we have shown that it was possible to produce hydroperoxy fatty acids from vegetable oil, in a biphasic system by coupling the catalytic activities of a lipase and a lipoxygenase. Different parameters were studied, and a special attention was given in order to understand the partitioning of substrates and products within such complicated system. Different experimental models have been used and studied, and the catalytic activity of both tested enzymes has been characterized. Different behaviours are reported for the different systems. The quality of the interface between the non miscible phases is of crucial importance. The addition of proteins within the system, and the accumulations on the interfacial area of free fatty acids and hydroperoxy fatty acids limits or the polyunsaturated fatty acids limits the productivity of the system, by avoiding access of enzymes to their substrates and by modifying the mass transfers between the different phases. This work delivers some methodology, allowing to quantify precisely the partitioning of products and substrates for the catalytic reactions tested, in order to define in a short term, new cleaner processes devoted to the valorisation of fats and oils, avoiding the use of solvents.LA ROCHELLE-BU (173002101) / SudocSudocFranceF

    Kinetic studies of fusarium solani pisi cutinase used in a gas/solid system: Transesterification and hydrolysis reactions

    No full text
    Fusarium solani cutinase supported onto Chromosorb P was used to catalyze transesterification (alcoholysis) and hydrolysis on short volatile alcohols and esters in a continuous gas/solid bioreactor. In this system, a solid phase composed of a packed enzymatic preparation was continuously percolated with carrier gas which fed substrates and removed reaction products simultaneously. A kinetic study was performed under differential operating conditions in order to get initial reaction rates. The effect of the hydration state of the biocatalyst on the kinetics was studied for 3 conditions of hydration (aw = 0.2, aw = 0.4 and aw = 0.6), the alcoholysis of propionic acid methyl ester with n-propanol, and for 5 hydration levels (from aw = 0.2 to aw = 0.6) for the hydrolysis of propionic acid methyl, ethyl or propyl esters. F. solani cutinase was found to have an unusual kinetic behavior. A sigmoid relationship between the rate of transesterification and the activity of methyl propionate was observed, suggesting some form of cooperative activation of the enzyme by one of its substrate. For the hydrolysis of short volatile propionic acid alkyl esters, threshold effects on the reaction rate, highly depending on the water activity and the substrate polarity, are reported. \ufffd 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 1-8, 1997.NRC publication: Ye
    corecore