8 research outputs found

    Substitution of arginine for glycine 664 in the collagen α1(I) chain in lethal perinatal osteogenesis imperfecta. Demonstration of the peptide defect by in vitro expression of the mutant cDNA

    No full text
    Structurally abnormal type I collagen was identified in tissues and cultured fibroblasts from a case of lethal perinatal osteogenesis imperfecta. Two-dimensional gel electrophoresis of the CNBr peptides demonstrated that the α1(I)CB7 peptide from the α1(I) chain of type I collagen existed in a normal form and a mutant form with a more basic charge distribution (Bateman, J.F., Mascara, T., Chan, D., and Cole, W.G. (1987) J. Biol. Chem. 262, 4445-4451). Sequencing of cloned α1(I) cDNAs prepared using mRNA from the patient's fibroblasts demonstrated that one clone had a single base substitution of A for G which resulted in the substitution of arginine for glycine 664 within the α1(I)CB7 peptide. To determine whether this mutation was responsible for the peptide map abnormality, in vitro transcription of mRNA from the mutant cDNA was performed using an SP6 vector system. The mRNA was then translated into mutant protein in a rabbit reticulocyte lysate. Peptide analysis of the protein produced from the mutant cDNA demonstrated the same altered charge distribution of the α1(I)CB7 peptide as observed with tissue- and cell-derived mutant collagen peptides. This finding confirmed that the arginine for glycine 664 sequence abnormality defined in the cDNA clone was the mutation causing the observed protein peptide map defect. This mutation is consistent with the functional abnormalities of collagen observed in this case such as reduced helical stability, reduced secretion, increased degradation, and excessive posttranslational modification of lysine.link_to_subscribed_fulltex

    A frameshift mutation results in a truncated nonfunctional carboxyl-terminal Proα1(I) propeptide of type I collagen in osteogenesis imperfecta

    No full text
    A codon frameshift mutation caused by a single base (U) insertion after base pair 4088 of preproα1(I) mRNA of type I procollagen was identified in a baby with lethal perinatal osteogenesis imperfecta. The mutation was identified in fibroblast RNA by a new method that allows the direct detection of mismatched bases by chemical modification and cleavage in heteroduplexes formed between mRNA and control cDNA probes. The region of mismatches was specifically amplified by the polymerase chain reaction and sequenced. The heterozygous mutation in the amplified cDNA most likely resulted from a T insertion in exon 49 of COL1A1. The frameshift resulted in a truncated proα1(I) carboxyl-terminal propeptide in which the amino acid sequence was abnormal from Val1146 to the carboxyl terminus. The propeptide lacked Asn118a7, which normally carries an N-linked oligosaccharide unit, and was more basic than the normal propeptide. The distribution of cysteines was altered and the mutant propeptide was unable to form normal interchain disulfide bonds. Some of the mutant proα1(I)' chains were incorporated into type I procollagen molecules but resulted in abnormal helix formation with overhydroxylation of lysine residues, increased degradation, and poor secretion. Only normal type I collagen was incorporated into the extracellular matrix in vivo resulting in a tissue type I collagen content approximately 20% of that of control (Bateman, J. F., Chan, D., Mascara, T., Rogers, J. G., and Cole, W. G. (1986) Biochem. J. 240, 699-708).link_to_subscribed_fulltex

    A base substitution at a splice site in the COL3A1 gene causes exon skipping and generates abnormal type III procollagen in a patient with Ehlers-Danlos syndrome type IV

    No full text
    The dermis of a child with Ehlers-Danlos syndrome type IV (EDS-IV) contained about 11% of the normal amount of type III collagen and cultured dermal fibroblasts produced a reduced amount of type III procollagen which was secreted poorly. Type III collagen produced by these cells contained normal and abnormal α-chains and cyanogen bromide peptides. The site of the structural defect in the abnormal α1(III) chains was localized to the region of Met797, which is at the junction of the two carboxyl-terminal CB5 and CB9 cyanogen bromide peptides. Chemical cleavage of hetero-duplexes formed between EDS-IV mRNA and a normal cDNA clone covering the CB5 and CB9 region showed that about 100 nucleotides were mismatched. Sequencing of amplified and cloned cDNA spanning the mutant region revealed a 108 nucleotide deletion corresponding to amino acid residues Gly775 to Lys810. The deleted nucleotide sequence corresponded to sequences that, by analogy to the organization of the type I collagen genes, should be precisely encoded by exon 41 of the COL3A1 gene. Sequencing of amplified genomic DNA, prepared using disimilar amounts of primers specific for exons 41 and 42, displayed a base substitution (G-to-A) in the highly conserved GT dinucleotide of the 5' splice site of intron 41. Normal sequences were also obtained from the normal allele. It is likely that the GT-to-AT transition at the splice donor site of intron 41 generated an abnormally spliced mRNA in which sequences of exon 40 and 42 were joined together with maintenance of the reading frame. The corresponding peptide deletion included the cyanogen bromide cleavage site Met797-Pro798 and the mammalian collagenase cleavage site at Gly781-Ile782. These losses account for the resistance of EDS-IV collagen to cyanogen bromide and mammalian collagenase digestion. Cultured fibroblasts produced normal homotrimer, mutant homotrimer, and mixed heterotrimer type III collagen molecules. The mutant homotrimer molecules were the major pepsin-resistant species and about 69% of the α1(III) mRNA was in the mutant form.link_to_subscribed_fulltex
    corecore