3 research outputs found

    Lanthanides-substituted hydroxyapatite for biomedical applications

    Get PDF
    Lately, there has been an increasing demand for materials that could improve tissue regenerative therapies and provide antimicrobial effects. Similarly, there is a growing need to develop or modify biomaterials for the diagnosis and treatment of different pathologies. In this scenario, hydroxyapatite (HAp) appears as a bioceramic with extended functionalities. Nevertheless, there are certain disadvantages related to the mechanical properties and lack of antimicrobial capacity. To circumvent them, the doping of HAp with a variety of cationic ions is emerging as a good alterative due to the different biological roles of each ion. Among many elements, lanthanides are understudied despite their great potential in the biomedical field. For this reason, the present review focuses on the biological benefits of lanthanides and how their incorporation into HAp can alter its morphology and physical properties. A comprehensive section of the applications of lanthanides-substituted HAp nanoparticles (HAp NPs) is presented to unveil the potential biomedical uses of these systems. Finally, the need to study the tolerable and non-toxic percentages of substitution with these elements is highlighted.Peer ReviewedPostprint (published version

    Hydroxyapatite biobased materials for treatment and diagnosis of cancer

    Get PDF
    Great advances in cancer treatment have been undertaken in the last years as a consequence of the development of new antitumoral drugs able to target cancer cells with decreasing side effects and a better understanding of the behavior of neoplastic cells during invasion and metastasis. Specifically, drug delivery systems (DDS) based on the use of hydroxyapatite nanoparticles (HAp NPs) are gaining attention and merit a comprehensive review focused on their potential applications. These are derived from the intrinsic properties of HAp (e.g., biocompatibility and biodegradability), together with the easy functionalization and easy control of porosity, crystallinity and morphology of HAp NPs. The capacity to tailor the properties of DLS based on HAp NPs has well-recognized advantages for the control of both drug loading and release. Furthermore, the functionalization of NPs allows a targeted uptake in tumoral cells while their rapid elimination by the reticuloendothelial system (RES) can be avoided. Advances in HAp NPs involve not only their use as drug nanocarriers but also their employment as nanosystems for magnetic hyperthermia therapy, gene delivery systems, adjuvants for cancer immunotherapy and nanoparticles for cell imaging.Peer ReviewedPostprint (published version

    Multifunctional scaffolds based on emulsion and coaxial electrospinning incorporation of hydroxyapatite for bone tissue regeneration

    Get PDF
    Tissue engineering is nowadays a powerful tool to restore damaged tissues and recover their normal functionality. Advantages over other current methods are well established, although a continuous evolution is still necessary to improve the final performance and the range of applications. Trends are nowadays focused on the development of multifunctional scaffolds with hierarchical structures and the capability to render a sustained delivery of bioactive molecules under an appropriate stimulus. Nanocomposites incorporating hydroxyapatite nanoparticles (HAp NPs) have a predominant role in bone tissue regeneration due to their high capacity to enhance osteoinduction, osteoconduction, and osteointegration, as well as their encapsulation efficiency and protection capability of bioactive agents. Selection of appropriated polymeric matrices is fundamental and consequently great efforts have been invested to increase the range of properties of available materials through copolymerization, blending, or combining structures constituted by different materials. Scaffolds can be obtained from different processes that differ in characteristics, such as texture or porosity. Probably, electrospinning has the greater relevance, since the obtained nanofiber membranes have a great similarity with the extracellular matrix and, in addition, they can easily incorporate functional and bioactive compounds. Coaxial and emulsion electrospinning processes appear ideal to generate complex systems able to incorporate highly different agents. The present review is mainly focused on the recent works performed with Hap-loaded scaffolds having at least one structural layer composed of core/shell nanofibers.Peer ReviewedPostprint (published version
    corecore