218 research outputs found
Comparative analysis of root transcriptomes from two contrasting drought-responsive Williams 82 and DT2008 soybean cultivars under normal and dehydration conditions
The economically important DT2008 and the model Williams 82 (W82) soybean cultivars were reported to have differential drought-tolerant degree to dehydration and drought, which was associated with root trait. Here, we used 66K Affymetrix Soybean Array GeneChip to compare the root transcriptomes of DT2008 and W82 seedlings under normal, as well as mild (2h treatment) and severe (10h treatment) dehydration conditions. Out of the 38172 soybean genes annotated with high confidence, 822 (2.15%) and 632 (1.66%) genes showed altered expression by dehydration in W82 and DT2008 roots, respectively, suggesting that a larger machinery is required to be activated in the drought-sensitive W82 cultivar to cope with the stress. We also observed that long-term dehydration period induced expression change of more genes in soybean roots than the short-term one, independently of the genotypes. Furthermore, our data suggest that the higher drought tolerability of DT2008 might be attributed to the higher number of genes induced in DT2008 roots than in W82 roots by early dehydration, and to the expression changes of more genes triggered by short-term dehydration than those by prolonged dehydration in DT2008 roots vs. W82 roots. Differentially expressed genes (DEGs) that could be predicted to have a known function were further analyzed to gain a basic understanding on how soybean plants respond to dehydration for their survival. The higher drought tolerability of DT2008 vs. W82 might be attributed to differential expression in genes encoding osmoprotectant biosynthesis-, detoxification- or cell wall-related proteins, kinases, transcription factors and phosphatase 2C proteins. This research allowed us to identify genetic components that contribute to the improved drought tolerance of DT2008, as well as provide a useful genetic resource for in-depth functional analyses that ultimately leads to development of soybean cultivars with improved tolerance to drought
Transcriptome Analyses of a Salt-Tolerant Cytokinin-Deficient Mutant Reveal Differential Regulation of Salt Stress Response by Cytokinin Deficiency
Soil destruction by abiotic environmental conditions, such as high salinity, has resulted in dramatic losses of arable land, giving rise to the need of studying mechanisms of plant adaptation to salt stress aimed at creating salt-tolerant plants. Recently, it has been reported that cytokinins (CKs) regulate plant environmental stress responses through two-component systems. A decrease in endogenous CK levels could enhance salt and drought stress tolerance. Here, we have investigated the global transcriptional change caused by a reduction in endogenous CK content under both normal and salt stress conditions. Ten-day-old Arabidopsis thaliana wild-type (WT) and CK-deficient ipt1,3,5,7 plants were transferred to agar plates containing either 0 mM (control) or 200 mM NaCl and maintained at normal growth conditions for 24 h. Our experimental design allowed us to compare transcriptome changes under four conditions: WT-200 mM vs. WT-0 mM, ipt1,3,5,7-0 mM vs. WT-0 mM, ipt1,3,5,7-200 mM vs. ipt1,3,5,7-0 mM and ipt1,3,5,7-200 mM vs. WT-200 mM NaCl. Our results indicated that the expression of more than 10% of all of the annotated Arabidopsis genes was altered by CK deficiency under either normal or salt stress conditions when compared to WT. We found that upregulated expression of many genes encoding either regulatory proteins, such as NAC, DREB and ZFHD transcription factors and the calcium sensor SOS3, or functional proteins, such as late embryogenesis-abundant proteins, xyloglucan endo-transglycosylases, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins, may contribute to improved salt tolerance of CK-deficient plants. We also demonstrated that the downregulation of photosynthesis-related genes and the upregulation of several NAC genes may cause the altered morphological phenotype of CK-deficient plants. This study highlights the impact of CK regulation on the well-known stress-responsive signaling pathways, which regulate plant adaptation to high salinity as well as other environmental stresses
Case Report: Successful Treatment of a Child With COVID-19 Reinfection-Induced Fulminant Myocarditis by Cytokine-Adsorbing oXirisยฎ Hemofilter Continuous Veno-Venous Hemofiltration and Extracorporeal Membrane Oxygenation
BACKGROUND: Indirect cardiomyocyte damage-related hyperinflammatory response is one of the key mechanisms in COVID-19-induced fulminant myocarditis. In addition to the clinical benefit of using cytokines absorption hemofiltration, the effectiveness of instituting veno-arterial extracorporeal membrane oxygenation (VA-ECMO) support for cardiac compromise has been reported. However, current literature enunciates a paucity of available data on the effectiveness of these novel modalities.
CASE PRESENTATION: We reported a 9-year-old boy with recurrent COVID-19 infection-causing fulminant myocarditis, who was treated successfully by using novel modalities of
CONCLUSION: We conclude that the novel highly-absorptive hemofilter CVVH and VA-ECMO may be effective treatment modalities in managing SARS-CoV-2-induced fulminant myocarditis. Our report highlights the need for further well-designed investigations to confirm this extrapolation
Function of KAI2 signaling in plant drought adaptation
Drought causes substantial reductions in crop yields worldwide. Therefore, we set out to identify new chemical and genetic factors that regulate drought resistance in Arabidopsis thaliana. Karrikins (KARs) are a class of butenolide compounds found in smoke that promote seed germination, and have been reported to improve seedling vigor under stressful growth conditions. Here, we discovered that mutations in KARRIKIN INSENSITIVE2 (KAI2), encoding the proposed karrikin receptor, result in hypersensitivity to water deprivation. We performed transcriptomic, physiological and biochemical analyses of kai2 plants to understand the basis for KAI2-regulated drought resistance. We found that kai2 mutants have increased rates of water loss and drought-induced cell membrane damage, enlarged stomatal apertures, and higher cuticular permeability. In addition, kai2 plants have reduced anthocyanin biosynthesis during drought, and are hyposensitive to abscisic acid (ABA) in stomatal closure and cotyledon opening assays. We identified genes that are likely associated with the observed physiological and biochemical changes through a genome-wide transcriptome analysis of kai2 under both well-watered and dehydration conditions. These data provide evidence for crosstalk between ABA- and KAI2-dependent signaling pathways in regulating plant responses to drought. A comparison of the strigolactone receptor mutant d14 (DWARF14) to kai2 indicated that strigolactones also contributes to plant drought adaptation, although not by affecting cuticle development. Our findings suggest that chemical or genetic manipulation of KAI2 and D14 signaling may provide novel ways to improve drought resistance
Comparison of methane metabolism in the rhizomicrobiomes of wild and related cultivated rice accessions reveals a strong impact of crop domestication
Microbial communities from rhizosphere (rhizomicrobiomes) have been significantly impacted by domestication as evidenced by a comparison of the rhizomicrobiomes of wild and related cultivated rice accessions. While there have been many published studies focusing on the structure of the rhizomicrobiome, studies comparing the functional traits of the microbial communities in the rhizospheres of wild rice and cultivated rice accessions are not yet available. In this study, we used metagenomic data from experimental rice plots to analyze the potential functional traits of the microbial communities in the rhizospheres of wild rice accessions originated from Africa and Asia in comparison with their related cultivated rice accessions. The functional potential of rhizosphere microbial communities involved in alanine, aspartate and glutamate metabolism, methane metabolism, carbon fixation pathways, citrate cycle (TCA cycle), pyruvate metabolism and lipopolysaccharide biosynthesis pathways were found to be enriched in the rhizomicrobiomes of wild rice accessions. Notably, methane metabolism in the rhizomicrobiomes of wild and cultivated rice accessions clearly differed. Key enzymes involved in methane production and utilization were overrepresented in the rhizomicrobiome samples obtained from wild rice accessions, suggesting that the rhizomicrobiomes of wild rice maintain a different ecological balance for methane production and utilization compared with those of the related cultivated rice accessions. A novel assessment of the impact of rice domestication on the primary metabolic pathways associated with microbial taxa in the rhizomicrobiomes was performed. Results indicated a strong impact of rice domestication on methane metabolism; a process that represents a critical function of the rhizosphere microbial community of rice. The findings of this study provide important information for future breeding of rice varieties with reduced methane emission during cultivation for sustainable agriculture
Chromium Stress Mitigation by Polyamine-Brassinosteroid Application Involves Phytohormonal and Physiological Strategies in Raphanus sativus L.
Brassinosteroids (BRs) and polyamines (PAs) are well-established growth regulators playing key roles in stress management among plants. In the present study, we evaluated the effects of epibrassinolide (EBL, an active BR) and spermidine (Spd, an active PA) on the tolerance of radish to oxidative stress induced by Cr (VI) metal. Our investigation aimed to study the impacts of EBL (10โ9 M) and/or Spd (1 mM) on the biochemical and physiological responses of radish (Raphanus sativus L.) under Cr-stress. Applications of EBL and/or Spd were found to improve growth of Cr-stressed seedlings in terms of root length, shoot length and fresh weight. Our data also indicated that applications of EBL and Spd have significant impacts, particularly when applied together, on the endogenous titers of PAs, free and bound forms of IAA and ABA in seedlings treated with Cr-stress. Additionally, co-applications of EBL and Spd modulated more remarkably the titers of antioxidants (glutathione, ascorbic acid, proline, glycine betaine and total phenol) and activities of antioxidant enzymes (guaicol peroxidase, catalase, superoxide dismutase and glutathione reductase) in Cr-stressed plants than their individual applications. Attenuation of Cr-stress by EBL and/or Spd (more efficient with EBL and Spd combination) was also supported by enhanced values of stress indices, such as phytochelatins, photosynthetic pigments and total soluble sugars, and reduction in malondialdehyde and H2O2 levels in Cr-treated seedlings. Diminution of ROS production and enhanced ROS scavenging capacities were also noted for EBL and/or Spd under Cr-stress. However, no significant reduction in Cr uptake was observed for co-application of EBL and Spd when compared to their individual treatments in Cr-stressed seedlings. Taken together, our results demonstrate that co-applications of EBL and Spd are more effective than their independent treatments in lowering the Cr-induced oxidative stress in radish, leading to improved growth of radish seedlings under Cr-stress
Spatiotemporal evolution of SARS-CoV-2 Alpha and Delta variants during large nationwide outbreak of COVID-19, Vietnam, 2021
We analyzed 1,303 SARS-CoV-2 whole-genome sequences from Vietnam, and found the Alpha and Delta variants were responsible for a large nationwide outbreak of COVID-19 in 2021. The Delta variant was confined to the AY.57 lineage and caused >1.7 million infections and >32,000 deaths. Viral transmission was strongly affected by nonpharmaceutical interventions
Higher Plant Cytochrome b5 Polypeptides Modulate Fatty Acid Desaturation
BACKGROUND: Synthesis of polyunsaturated fatty acids (PUFAs) in the endoplasmic reticulum of plants typically involves the fatty acid desaturases FAD2 and FAD3, which use cytochrome b(5) (Cb5) as an electron donor. Higher plants are reported to have multiple isoforms of Cb5, in contrast to a single Cb5 in mammals and yeast. Despite the wealth of information available on the roles of FAD2 and FAD3 in PUFA synthesis, information regarding the contributions of various Cb5 isoforms in desaturase-mediated reactions is limited. RESULTS: The present functional characterization of Cb5 polypeptides revealed that all Arabidopsis Cb5 isoforms are not similarly efficient in ฯ-6 desaturation, as evidenced by significant variation in their product outcomes in yeast-based functional assays. On the other hand, characterization of Cb5 polypeptides of soybean (Glycine max) suggested that similar ฯ-6 desaturation efficiencies were shared by various isoforms. With regard to ฯ-3 desaturation, certain Cb5 genes of both Arabidopsis and soybean were shown to facilitate the accumulation of more desaturation products than others when co-expressed with their native FAD3. Additionally, similar trends of differential desaturation product accumulation were also observed with most Cb5 genes of both soybean and Arabidopsis even if co-expressed with non-native FAD3. CONCLUSIONS: The present study reports the first description of the differential nature of the Cb5 genes of higher plants in fatty acid desaturation and further suggests that ฯ-3/ฯ-6 desaturation product outcome is determined by the nature of both the Cb5 isoform and the fatty acid desaturases
- โฆ