9,520 research outputs found
Quantum study of information delay in electromagetically induced transparency
Using electromagnetically induced transparency (EIT), it is possible to delay
and store light in atomic ensembles. Theoretical modelling and recent
experiments have suggested that the EIT storage mechanism can be used as a
memory for quantum information. We present experiments that quantify the noise
performance of an EIT system for conjugate amplitude and phase quadratures. It
is shown that our EIT system adds excess noise to the delayed light that has
not hitherto been predicted by published theoretical modelling. In analogy with
other continuous-variable quantum information systems, the performance of our
EIT system is characterised in terms of conditional variance and signal
transfer.Comment: 4 pages, 4 figure
Quantum Noise Locking
Quantum optical states which have no coherent amplitude, such as squeezed
vacuum states, can not rely on standard readout techniques to generate error
signals for control of the quadrature phase. Here we investigate the use of
asymmetry in the quadrature variances to obtain a phase-sensitive readout and
to lock the phase of a squeezed vacuum state, a technique which we call noise
locking (NL). We carry out a theoretical derivation of the NL error signal and
the associated stability of the squeezed and anti-squeezed lock points.
Experimental data for the NL technique both in the presence and absence of
coherent fields are shown, including a comparison with coherent locking
techniques. Finally, we use NL to enable a stable readout of the squeezed
vacuum state on a homodyne detector.Comment: Accepted for publication in Journal of Optics:B special issue on
Quantum Contro
Constructive algebraic renormalization of the abelian Higgs-Kibble model
We propose an algorithm, based on Algebraic Renormalization, that allows the
restoration of Slavnov-Taylor invariance at every order of perturbation
expansion for an anomaly-free BRS invariant gauge theory. The counterterms are
explicitly constructed in terms of a set of one-particle-irreducible Feynman
amplitudes evaluated at zero momentum (and derivatives of them). The approach
is here discussed in the case of the abelian Higgs-Kibble model, where the zero
momentum limit can be safely performed. The normalization conditions are
imposed by means of the Slavnov-Taylor invariants and are chosen in order to
simplify the calculation of the counterterms. In particular within this model
all counterterms involving BRS external sources (anti-fields) can be put to
zero with the exception of the fermion sector.Comment: Jul, 1998, 31 page
Erratum : Squeezing and entanglement delay using slow light
An inconsistency was found in the equations used to calculate the variance of
the quadrature fluctuations of a field propagating through a medium
demonstrating electromagnetically induced transparency (EIT). The decoherence
term used in our original paper introduces inconsistency under weak probe
approximation. In this erratum we give the Bloch equations with the correct
dephasing terms. The conclusions of the original paper remain the same. Both
entanglement and squeezing can be delayed and preserved using EIT without
adding noise when the decoherence rate is small.Comment: 1 page, no figur
Renormalization of the N=1 Abelian Super-Chern-Simons Theory Coupled to Parity-Preserving Matter
We analyse the renormalizability of an Abelian N=1 super-Chern-Simons model
coupled to parity-preserving matter on the light of the regularization
independent algebraic method. The model shows to be stable under radiative
corrections and to be gauge anomaly free.Comment: Latex, 7 pages, no figure
Deformation analysis of fibre-reinforced polymer reinforced concrete beams by tension-stiffening approach
Fibre-reinforced polymer (FRP) is free from corrosion problem and is a viable alternative reinforcement material for concrete structures in lieu of steel reinforcing bars. Since FRP has lower elastic modulus compared to steel, the serviceability aspect of FRP reinforced concrete (FRP-RC) members should be particularly considered in the structural analysis and design. This study addresses the deformation analysis of FRP-RC flexural members with thorough consideration of the tension-stiffening phenomenon in post-cracking state. The approaches for analyzing the tension-stiffening flexural response of FRP-RC beams are presented. These include the use of empirical or theoretical models to compute effective flexural stiffness, the use of finite element method in conjunction with nonlinear constitutive material models, and the use of tensile stress block in combination with member analysis. Among them, the latter is a relatively simple analysis approach. Aiming for serviceability assessment of FRP-RC beams in structural engineering practice to circumvent sophisticated theoretical approaches and constitutive models, parametrized tensile stress block is derived based on tension stress fields computed from finite element analysis, and is proposed for use in member analysis for prediction of deflections. Four FRP-RC beam specimens tested in the literature are analyzed to verify the proposed tensile stress block. Close agreement between the experimental and analytical results is achieved, thereby endorsing the applicability and reliability of the proposed method.European Social Fund (Project No. 09.3.3-LMT-K-712-01-0145) under a grant agreement with the Research Council of Lithuania (LMTLT)
Disparate Osteogenic Response of Mandible and Iliac Crest Bone Marrow Stromal Cells to Pamidronate
OBJECTIVE Long-term administration of intravenous bisphosphonates like pamidronate is associated with jaw osteonecrosis but axial and appendicular bones are unaffected. Pathogenesis of bisphosphonate-associated jaw osteonecrosis may relate to skeletal-site specific effects of bisphosphonates on osteogenic differentiation of bone marrow stromal cells (BMSCs) of orofacial and axial/appendicular bones. This study evaluated and compared skeletal site-specific osteogenic response of mandible (orofacial bone) and iliac crest (axial bone) human BMSCs to pamidronate. MATERIALS AND METHODS Mandible and iliac crest BMSCs from six normal healthy volunteers were established in culture and tested with pamidronate to evaluate and compare cell survival, osteogenic marker alkaline phosphatase, osteoclast differentiation in co-cultures with CD34+ hematopoietic stem cells, gene expression of receptor activator of NFκB ligand (RANKL) and osteoprotegerin, and in vivo bone regeneration. BRESULTS Mandible BMSCs were more susceptible to pamidronate than iliac crest BMSCs based on decreased cell survival, lower alkaline phosphatase production and structurally less organized in vivo bone regeneration. Pamidronate promoted higher RANKL gene expression and osteoclast recruitment by mandible BMSCs. CONCLUSION Mandible and iliac crest BMSC survival and osteogenic differentiation are disparately affected by pamidronate to favor dysregulated mandible bone homeostasis
Resolving the Large-N Nuclear Potential Puzzle
The large nuclear potential puzzle arose because three- and
higher-meson exchange contributions to the nucleon-nucleon potential did not
automatically yield cancellations that make these contributions consistent with
the general large scaling rules for the potential. Here it is proposed
that the resolution to this puzzle is that the scaling rules only apply for
energy-independent potentials while all of the cases with apparent
inconsistencies were for energy-dependent potentials. It is shown explicitly
how energy-dependent potentials can have radically different large N behavior
than an equivalent energy-independent one. One class of three-meson graphs is
computed in which the contribution to the energy-independent potential is
consistent with the general large N rules even though the energy-dependent
potential is not.Comment: Corrections to the toy mode
Pipe network model for scaling of dynamic interfaces in porous media
We present a numerical study on the dynamics of imbibition fronts in porous
media using a pipe network model. This model quantitatively reproduces the
anomalous scaling behavior found in imbibition experiments [Phys. Rev. E {\bf
52}, 5166 (1995)]. Using simple scaling arguments, we derive a new identity
among the scaling exponents in agreement with the experimental results.Comment: 13 pages, 3 figures, REVTeX, to appear in Phys. Rev. Let
- …