2,799 research outputs found

    Bounding Optimality Gap in Stochastic Optimization via Bagging: Statistical Efficiency and Stability

    Full text link
    We study a statistical method to estimate the optimal value, and the optimality gap of a given solution for stochastic optimization as an assessment of the solution quality. Our approach is based on bootstrap aggregating, or bagging, resampled sample average approximation (SAA). We show how this approach leads to valid statistical confidence bounds for non-smooth optimization. We also demonstrate its statistical efficiency and stability that are especially desirable in limited-data situations, and compare these properties with some existing methods. We present our theory that views SAA as a kernel in an infinite-order symmetric statistic, which can be approximated via bagging. We substantiate our theoretical findings with numerical results

    From Black-Scholes to Online Learning: Dynamic Hedging under Adversarial Environments

    Full text link
    We consider a non-stochastic online learning approach to price financial options by modeling the market dynamic as a repeated game between the nature (adversary) and the investor. We demonstrate that such framework yields analogous structure as the Black-Scholes model, the widely popular option pricing model in stochastic finance, for both European and American options with convex payoffs. In the case of non-convex options, we construct approximate pricing algorithms, and demonstrate that their efficiency can be analyzed through the introduction of an artificial probability measure, in parallel to the so-called risk-neutral measure in the finance literature, even though our framework is completely adversarial. Continuous-time convergence results and extensions to incorporate price jumps are also presented
    • …
    corecore