1,923 research outputs found

    A Triple-Masked, Randomized Controlled Trial Comparing Ultrasound-Guided Brachial Plexus and Distal Peripheral Nerve Block Anesthesia for Outpatient Hand Surgery

    Get PDF
    Background. For hand surgery, brachial plexus blocks provide effective anesthesia but produce undesirable numbness. We hypothesized that distal peripheral nerve blocks will better preserve motor function while providing effective anesthesia. Methods. Adult subjects who were scheduled for elective ambulatory hand surgery under regional anesthesia and sedation were recruited and randomly assigned to receive ultrasound-guided supraclavicular brachial plexus block or distal block of the ulnar and median nerves. Each subject received 15 mL of 1.5% mepivacaine at the assigned location with 15 mL of normal saline injected in the alternate block location. The primary outcome (change in baseline grip strength measured by a hydraulic dynamometer) was tested before the block and prior to discharge. Subject satisfaction data were collected the day after surgery. Results. Fourteen subjects were enrolled. Median (interquartile range [IQR]) strength loss in the distal group was 21.4% (14.3, 47.8%), while all subjects in the supraclavicular group lost 100% of their preoperative strength, P = 0.001. Subjects in the distal group reported greater satisfaction with their block procedures on the day after surgery, P = 0.012. Conclusion. Distal nerve blocks better preserve motor function without negatively affecting quality of anesthesia, leading to increased patient satisfaction, when compared to brachial plexus block

    The transcription factor FOXO3a is a crucial cellular target of gefitinib (Iressa) in breast cancer cells

    Get PDF
    Gefitinib is a specific inhibitor of the epidermal growth factor receptor (EGFR) that causes growth delay in cancer cell lines and human tumor xenografts expressing high levels of EGFR. An understanding of the downstream cellular targets of gefitinib will allow the discovery of biomarkers for predicting outcomes and monitoring anti-EGFR therapies and provide information for key targets for therapeutic intervention. In this study, we investigated the role of FOXO3a in gefitinib action and resistance. Using two gefitinib-sensitive (i.e., BT474 and SKBR3) as well as three other resistant breast carcinoma cell lines (i.e., MCF-7, MDA-MB-231, and MDA-MB-453), we showed that gefitinib targets the transcription factor FOXO3a to mediate cell cycle arrest and cell death in sensitive breast cancer cells. In the sensitive cells, gefitinib treatment causes cell cycle arrest predominantly at the G(0)-G(1) phase and apoptosis, which is associated with FOXO3a dephosphorylation at Akt sites and nuclear translocation, whereas in the resistant cells, FOXO3a stays phosphorylated and remains in the cytoplasm. The nuclear accumulation of FOXO3a in response to gefitinib was confirmed in tumor tissue sections from breast cancer patients presurgically treated with gefitinib as monotherapy. We also showed that knockdown of FOXO3a expression using small interfering RNA (siRNA) can rescue sensitive BT474 cells from gefitinib-induced cell-proliferative arrest, whereas reintroduction of active FOXO3a in resistant MDA-MB-231 cells can at least partially restore cell-proliferative arrest and sensitivity to gefitinib. These results suggest that the FOXO3a dephosphorylation and nuclear localization have a direct role in mediating the gefitinib-induced proliferative arrest and in determining sensitivity to gefitinib.Supported by the German Cancer Aide Foundation (J. Krol)and the Association of International Cancer Research (R. Francis).Andrew Sunters and Andreas Polychronic were fellows funded by CancerResearch UK. Andre Albergaria is a recipient of a grant from Fundação para a Ciência e a Tecnologia, Portugal. This work was sponsored by theBreast Cancer Research Trust and Cancer Research U

    Association of CNVs with methylation variation.

    Get PDF
    Germline copy number variants (CNVs) and single-nucleotide polymorphisms (SNPs) form the basis of inter-individual genetic variation. Although the phenotypic effects of SNPs have been extensively investigated, the effects of CNVs is relatively less understood. To better characterize mechanisms by which CNVs affect cellular phenotype, we tested their association with variable CpG methylation in a genome-wide manner. Using paired CNV and methylation data from the 1000 genomes and HapMap projects, we identified genome-wide associations by methylation quantitative trait locus (mQTL) analysis. We found individual CNVs being associated with methylation of multiple CpGs and vice versa. CNV-associated methylation changes were correlated with gene expression. CNV-mQTLs were enriched for regulatory regions, transcription factor-binding sites (TFBSs), and were involved in long-range physical interactions with associated CpGs. Some CNV-mQTLs were associated with methylation of imprinted genes. Several CNV-mQTLs and/or associated genes were among those previously reported by genome-wide association studies (GWASs). We demonstrate that germline CNVs in the genome are associated with CpG methylation. Our findings suggest that structural variation together with methylation may affect cellular phenotype

    Correction to: Tumour suppressor EP300, a modulator of paclitaxel resistance and stemness, is downregulated in metaplastic breast cancer

    Get PDF
    In the original publication, Fig. 1 depicting the blot for EP300 in CAL51 cells (Fig. 1c) was unintentionally duplicated with that from MDA-MB-231 cells (Fig. 1d). The new figure given in this erratum depicts the correct EP300 blot in Fig. 1c

    A porcine model of heart failure with preserved ejection fraction:magnetic resonance imaging and metabolic energetics

    Get PDF
    Aims A significant proportion of heart failure (HF) patients have HF preserved ejection fraction (HFpEF). The lack of effective treatments for HFpEF remains a critical unmet need. A key obstacle to therapeutic innovation in HFpEF is the paucity of pre-clinical models. Although several large animal models have been reported, few demonstrate progression to decompensated HF. We have established a model of HFpEF by enhancing a porcine model of progressive left ventricular (LV) pressure overload and characterized HF in this model including advanced cardiometabolic imaging using cardiac magnetic resonance imaging and hyperpolarized carbon-13 magnetic resonance spectroscopy. Methods and results Pigs underwent progressive LV pressure overload by means of an inflatable aortic cuff. Pigs developed LV hypertrophy (50% increase in wall thickness, P <0.001, and two-fold increase in mass compared to sham control, P <0.001) with no evidence of LV dilatation but a significant increase in left atrial volume (P = 0.013). Cardiac magnetic resonance imaging demonstrated T1 modified Look-Locker inversion recovery values increased in 16/17 segments compared to sham pigs (P <0.05-P <0.001) indicating global ventricular fibrosis. Mean LV end-diastolic (P = 0.047) and pulmonary capillary wedge pressures (P = 0.008) were elevated compared with sham control. One-third of the pigs demonstrated clinical signs of frank decompensated HF, and mean plasma BNP concentrations were raised compared with sham control (P = 0.008). Cardiometabolic imaging with hyperpolarized carbon-13 magnetic resonance spectroscopy agreed with known metabolic changes in the failing heart with a switch from fatty acid towards glucose substrate utilization. Conclusions Progressive aortic constriction in growing pigs induces significant LV hypertrophy with cardiac fibrosis associated with left atrial dilation, raised filling pressures, and an ability to transition to overt HF with raised BNP without reduction in LVEF. This model replicates many aspects of clinical HFpEF with a predominant background of hypertension and can be used to advance understanding of underlying pathology and for necessary pre-clinical testing of novel candidate therapies

    Pain outcomes in patients with bone metastases from advanced cancer: assessment and management with bone-targeting agents

    Get PDF
    Bone metastases in advanced cancer frequently cause painful complications that impair patient physical activity and negatively affect quality of life. Pain is often underreported and poorly managed in these patients. The most commonly used pain assessment instruments are visual analogue scales, a single-item measure, and the Brief Pain Inventory Questionnaire-Short Form. The World Health Organization analgesic ladder and the Analgesic Quantification Algorithm are used to evaluate analgesic use. Bone-targeting agents, such as denosumab or bisphosphonates, prevent skeletal complications (i.e., radiation to bone, pathologic fractures, surgery to bone, and spinal cord compression) and can also improve pain outcomes in patients with metastatic bone disease. We have reviewed pain outcomes and analgesic use and reported pain data from an integrated analysis of randomized controlled studies of denosumab versus the bisphosphonate zoledronic acid (ZA) in patients with bone metastases from advanced solid tumors. Intravenous bisphosphonates improved pain outcomes in patients with bone metastases from solid tumors. Compared with ZA, denosumab further prevented pain worsening and delayed the need for treatment with strong opioids. In patients with no or mild pain at baseline, denosumab reduced the risk of increasing pain severity and delayed pain worsening along with the time to increased pain interference compared with ZA, suggesting that use of denosumab (with appropriate calcium and vitamin D supplementation) before patients develop bone pain may improve outcomes. These data also support the use of validated pain assessments to optimize treatment and reduce the burden of pain associated with metastatic bone disease

    Measurement of the B0_s semileptonic branching ratio to an orbitally excited D_s** state, Br(B0_s -> Ds1(2536) mu nu)

    Get PDF
    In a data sample of approximately 1.3 fb-1 collected with the D0 detector between 2002 and 2006, the orbitally excited charm state D_s1(2536) has been observed with a measured mass of 2535.7 +/- 0.6 (stat) +/- 0.5 (syst) MeV via the decay mode B0_s -> D_s1(2536) mu nu X. A first measurement is made of the branching ratio product Br(b(bar) -> D_s1(2536) mu nu X).Br(D_s1(2536)->D* K0_S). Assuming that D_s1(2536) production in semileptonic decay is entirely from B0_s, an extraction of the semileptonic branching ratio Br(B0_s -> D_s1(2536) mu nu X) is made.Comment: 7 pages, 2 figures, LaTeX, version with minor changes as accepted by Phys. Rev. Let

    Simultaneous measurement of the ratio B(t->Wb)/B(t->Wq) and the top quark pair production cross section with the D0 detector at sqrt(s)=1.96 TeV

    Get PDF
    We present the first simultaneous measurement of the ratio of branching fractions, R=B(t->Wb)/B(t->Wq), with q being a d, s, or b quark, and the top quark pair production cross section sigma_ttbar in the lepton plus jets channel using 0.9 fb-1 of ppbar collision data at sqrt(s)=1.96 TeV collected with the D0 detector. We extract R and sigma_ttbar by analyzing samples of events with 0, 1 and >= 2 identified b jets. We measure R = 0.97 +0.09-0.08 (stat+syst) and sigma_ttbar = 8.18 +0.90-0.84 (stat+syst)} +/-0.50 (lumi) pb, in agreement with the standard model prediction.Comment: submitted to Phys.Rev.Letter
    • …
    corecore