17 research outputs found

    In the diffraction shadow: Norton waves versus surface plasmon-polaritons in the optical region

    Get PDF
    Surface electromagnetic modes supported by metal surfaces have a great potential for uses in miniaturised detectors and optical circuits. For many applications these modes are excited locally. In the optical regime, Surface Plasmon Polaritons (SPPs) have been thought to dominate the fields at the surface, beyond a transition region comprising 3-4 wavelengths from the source. In this work we demonstrate that at sufficiently long distances SPPs are not the main contribution to the field. Instead, for all metals, a different type of wave prevails, which we term Norton waves for their reminiscence to those found in the radio-wave regime at the surface of the Earth. Our results show that Norton Waves are stronger at the surface than SPPs at distances larger than 6-9 SPP's absorption lengths, the precise value depending on wavelength and metal. Moreover, Norton waves decay more slowly than SPPs in the direction normal to the surface.Comment: 8 pages, 8 figure

    Channelling surface plasmons

    No full text

    Enhanced optical transmission through arrays of subwavelength apertures in noble and transition metals

    No full text
    Arrays of subwavelength holes in metal film show enhanced transmission when compared to what is expected from classical diffraction. It appears that this phenomenon is crucially related to surface plasmon polaritons. By their nature, surface plasmon polaritons are particularly sensitive to the optical properties of the metal film. In this work we relate in the optical regime these properties on the enhanced transmission

    Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons

    No full text
    Controlling the launching efficiencies and the directionality of surface plasmon polaritons (SPPs) and their decoupling to freely propagating light is a major goal for the development of plasmonic devices and systems. Here, we report on the design and experimental observation of a highly efficient unidirectional surface plasmon launcher composed of eleven subwavelength grooves, each with a distinct depth and width. Our observations show that, under normal illumination by a focused Gaussian beam, unidirectional SPP launching with an efficiency of at least 52% is achieved experimentally with a compact device of total length smaller than 8 μm. Reciprocally, we report that the same device can efficiently convert SPPs into a highly directive light beam emanating perpendicularly to the sample
    corecore