696 research outputs found
Microstructure of the Local Interstellar Cloud and the Identification of the Hyades Cloud
We analyze high-resolution UV spectra of the Mg II h and k lines for 18
members of the Hyades Cluster to study inhomogeneity along these proximate
lines of sight. The observations were taken by the Space Telescope Imaging
Spectrograph (STIS) instrument on board the Hubble Space Telescope (HST). Three
distinct velocity components are observed. All 18 lines of sight show
absorption by the Local Interstellar Cloud (LIC), ten stars show absorption by
an additional cloud, which we name the Hyades Cloud, and one star exhibits a
third absorption component. The LIC absorption is observed at a lower radial
velocity than predicted by the LIC velocity vector derived by Lallement &
Bertin (1992) and Lallement et al. (1995), (v(predicted LIC) - v(observed LIC)
= 2.9 +/- 0.7 km/s), which may indicate a compression or deceleration at the
leading edge of the LIC. We propose an extention of the Hyades Cloud boundary
based on previous HST observations of other stars in the general vicinity of
the Hyades, as well as ground-based Ca II observations. We present our fits of
the interstellar parameters for each absorption component. The availability of
18 similar lines of sight provides an excellent opportunity to study the
inhomogeneity of the warm, partially ionized local interstellar medium (LISM).
We find that these structures are roughly homogeneous. The measured Mg II
column densities do not vary by more than a factor of 2 for angular separations
of < 8 degrees, which at the outer edge of the LIC correspond to physical
separations of < 0.6 pc.Comment: 35 pages, 11 figures, AASTEX v.5.0 plus EPSF extensions in mkfig.sty;
accepted by Ap
Surprisingly Little O VI Emission Arises in the Local Bubble
This paper reports the first study of the O VI resonance line emission (1032,
1038 Angstroms) originating in the Local Bubble (or Local Hot Bubble)
surrounding the solar neighborhood. In spite of the fact that O VI absorption
within the Local Bubble has been observed, no resonance line emission was
detected during our 230 ksec Far Ultraviolet Spectroscopic Explorer observation
toward a ``shadowing'' filament in the southern Galactic hemisphere. As a
result, tight 2 sigma upper limits are set on the intensities in the 1032 and
1038 Angstrom emission lines: 500 and 530 photons cm^{-2} s^{-1} sr^{-1},
respectively. These values place strict constraints on models and simulations.
They suggest that the O VI-bearing plasma and the X-ray emissive plasma reside
in distinct regions of the Local Bubble and are not mixed in a single plasma,
whether in equilibrium with T ~ 10^6 K or highly overionized with T ~ 4 to 6 x
10^4 K. If the line of sight intersects multiple cool clouds within the Local
Bubble, then the results also suggest that hot/cool transition zones differ
from those in current simulations. With these intensity upper limits, we
establish limits on the electron density, thermal pressure, pathlength, and
cooling timescale of the O VI-bearing plasma in the Local Bubble. Furthermore,
the intensity of O VI resonance line doublet photons originating in the
Galactic thick disk and halo is determined (3500 to 4300 photons cm^{-2} s^{-1}
sr^{-1}), and the electron density, thermal pressure, pathlength, and cooling
timescale of its O VI-bearing plasma are calculated. The pressure in the
Galactic halo's O VI-bearing plasma (3100 to 3800 K cm^{-3}) agrees with model
predictions for the total pressure in the thick disk/lower halo. We also report
the results of searches for other emission lines.Comment: accepted by ApJ, scheduled for May 2003, replacement astro-ph
submission corrects typos and grammatical errors in original versio
The Velocity Distribution of the Nearest Interstellar Gas
The bulk flow velocity for the cluster of interstellar cloudlets within about
30 pc of the Sun is determined from optical and ultraviolet absorption line
data, after omitting from the sample stars with circumstellar disks or variable
emission lines and the active variable HR 1099. Ninety-six velocity components
towards the remaining 60 stars yield a streaming velocity through the local
standard of rest of -17.0+/-4.6 km/s, with an upstream direction of l=2.3 deg,
b=-5.2 deg (using Hipparcos values for the solar apex motion). The velocity
dispersion of the interstellar matter (ISM) within 30 pc is consistent with
that of nearby diffuse clouds, but present statistics are inadequate to
distinguish between a Gaussian or exponential distribution about the bulk flow
velocity. The upstream direction of the bulk flow vector suggests an origin
associated with the Loop I supernova remnant. Groupings of component velocities
by region are seen, indicating regional departures from the bulk flow velocity
or possibly separate clouds. The absorption components from the cloudlet
feeding ISM into the solar system form one of the regional features. The
nominal gradient between the velocities of upstream and downstream gas may be
an artifact of the Sun's location near the edge of the local cloud complex. The
Sun may emerge from the surrounding gas-patch within several thousand years.Comment: Typographical errors corrected; Five tables, seven figures;
Astrophysical Journal, in pres
Neutral interstellar hydrogen in the inner heliosphere under the influence of wavelength-dependent solar radiation pressure
With the plethora of detailed results from heliospheric missions and at the
advent of the first mission dedicated IBEX, we have entered the era of
precision heliospheric studies. Interpretation of these data require precision
modeling, with second-order effects quantitatively taken into account. We study
the influence of the non-flat shape of the solar Ly-alpha line on the
distribution of neutral interstellar H in the inner heliosphere. Based on
available data, we (i) construct a model of evolution for the solar Ly-alpha
line profile with solar activity, (ii) modify an existing test-particle code
used to calculate the distribution of neutral interstellar H in the inner
heliosphere so that it takes the dependence of radiation pressure on radial
velocity into account, and (iii) compare the results of the old and new
version. Discrepancies between the classical and Doppler models appear between
~5 and ~3 AU and increase towards the Sun from a few percent to a factor of 1.5
at 1 AU. The classical model overestimates the density everywhere except for a
~60-degr cone around the downwind direction, where a density deficit appears.
The magnitude of the discrepancies appreciably depends on the phase of the
solar cycle, but only weakly on the parameters of the gas at the termination
shock. For in situ measurements of neutral atoms performed at ~1 AU, the
Doppler correction will need to be taken into account, because the
modifications include both the magnitude and direction of the local flux by a
few km/s and degrees, respectively, which, when unaccounted for, would
introduce an error of a few km/s and degrees in determination of the magnitude
and direction of the bulk velocity vector at the termination shock.Comment: 10 pages, 13 figures, accepted by A&
Chopper Line Studies
In the layout of the LINAC4, a Medium Energy Beam Transport (MEBT) is placed between the RFQ and the DTL, comprising a chopper and matching the beam parameters to the DTL
Effect of the heliospheric interface on the distribution of interstellar hydrogen atom inside the heliosphere
This paper deals with the modeling of the interstellar hydrogen atoms (H
atoms) distribution in the heliosphere. We study influence of the heliospheric
interface, that is the region of the interaction between solar wind and local
interstellar medium, on the distribution of the hydrogen atoms in vicinity of
the Sun. The distribution of H atoms obtained in the frame of the
self-consistent kinetic-gasdynamic model of the heliospheric interface is
compared with a simplified model which assumes Maxwellian distribution of H
atoms at the termination shock and is called often as 'hot' model. This
comparison shows that the distribution of H atoms is significantly affected by
the heliospheric interface not only at large heliocentric distances, but also
in vicinity of the Sun at 1-5 AU. Hence, for analysis of experimental data
connected with direct or undirect measurements of the interstellar atoms one
necessarily needs to take into account effects of the heliospheric interface.
In this paper we propose a new model that is relatively simple but takes into
account all major effects of the heliospheric interface. This model can be
applied for analysis of backscattered Ly-alpha radiation data obtained on board
of different spacecraft.Comment: published in Astronomy Letter
Beam Shape and Halo Monitor Study
The Beam Shape and Halo Monitor, designed by Masaki Hori, is the main diagnostic tool for the 3 MeV test stand scheduled in 2008. This detector will be able to measure the transverse halo generated in the RFQ and the Chopper-line and to detect and measure the longitudinal halo composed of the incompletely chopped bunches. Its principle of functioning is the following: H- ions hit a carbon foil and generate secondary electrons with the same spatial distribution than the incoming beam and a current depending on an emission coefficient given by the carbon foil. These electrons are accelerated towards a phosphor screen by an electric field applied between accelerating grids. Once the electrons reach the phosphor screen, they generate light which is transmitted to a CCD camera via optic fibers [1]. It is expected to give a time resolution of 1-2ns and a spatial resolution of 1mm. The first test of the BSHM done with a Laser has shown a spatial resolution bigger than 1cm and the time resolution bigger than 2ns[2]. The purpose of this study is to understand what are the processes which deteriorate the resolution and to show the benefits brought by adding a pre-accelerating grid in the detector
Towards DIB mapping in galaxies beyond 100 Mpc. A radial profile of the 5780.5 diffuse interstellar band in AM 1353-272 B
Diffuse Interstellar Bands (DIBs) are non-stellar weak absorption features of
unknown origin found in the spectra of stars viewed through one or several
clouds of Interstellar Medium (ISM). Research of DIBs outside the Milky Way is
currently very limited. Specifically spatially resolved investigations of DIBs
outside of the Local Group is, to our knowledge, inexistent. Here, we explore
the capability of the high sensitivity Integral Field Spectrograph, MUSE, as a
tool to map diffuse interstellar bands at distances larger than 100 Mpc. We use
MUSE commissioning data for AM 1353-272 B, the member with highest extinction
of the "The Dentist's Chair", an interacting system of two spiral galaxies.
High signal-to-noise spectra were created by co-adding the signal of many
spatial elements distributed in a geometry of concentric elliptical half-rings.
We derived decreasing radial profiles for the equivalent width of the
5780.5 DIB both in the receding and approaching side of the companion
galaxy up to distances of 4.6 kpc from the center of the galaxy.
Likewise, interstellar extinction, as derived from the Halpha/Hbeta line ratio
displays a similar trend, with decreasing values towards the external parts.
This translates into an intrinsic correlation between the strength of the DIB
and the extinction within AM 1353-272 B consistent with the current existing
global trend between these quantities when using measurements for both Galactic
and extragalactic sight lines. Mapping of DIB strength in the Local Universe as
up to now only done for the Milky Way seems feasible. This offers a new
approach to study the relationship between DIBs and other characteristics and
species of the ISM in different conditions as those found in our Galaxy to the
use of galaxies in the Local Group and/or single sightlines towards supernovae,
quasars and galaxies outside the Local Group.Comment: 4 pages, 4 figures, accepted for publication as a Letter in Astronomy
and Astrophysics; Received 10 February 2015 / Accepted 20 February 2015 ;
English corrections include
Updated layout of the LINAC4 transfer line to the PS Booster (Green Field Option)
At the time of defining the site of Linac4 and its integration in the complex of existing infrastructure at CERN (together with the plans for a future Superconducting Proton Linac), a series of radiation protection issues emerged that have since prompted a revision of the Linac4 to PSB transfer line layout, as was described in the document ABùNoteù2007ù037. For radiological safety reasons the distance between the planned SPL tunnel and the basement of building 513 had to be increased, and this led to the decision to lower the Linac4 machine by 2.5m. A vertical ramp was consequently introduced in the transfer line to raise the beam at the same level of LINAC2/PSB for connection to the existing transfer line. A series of error study runs has been carried out on the modified layout to have an estimate of the losses induced by quadrupole alignment and field errors. The two worst cases of each error family have been used as case studies to test the efficiency of possible steering strategies in minimizing beam losses and machine activation. The new layout and beam dynamics issues plus the results of the error and steering studies are discussed in this note
Deuterium Toward WD1634-573: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission
We use Far Ultraviolet Spectrocopic Explorer (FUSE) observations to study
interstellar absorption along the line of sight to the white dwarf WD1634-573
(d=37.1+/-2.6 pc). Combining our measurement of D I with a measurement of H I
from Extreme Ultraviolet Explorer data, we find a D/H ratio toward WD1634-573
of D/H=(1.6+/-0.5)e-5. In contrast, multiplying our measurements of D I/O
I=0.035+/-0.006 and D I/N I=0.27+/-0.05 with published mean Galactic ISM gas
phase O/H and N/H ratios yields D/H(O)=(1.2+/-0.2)e-5 and
D/H(N)=(2.0+/-0.4)e-5, respectively. Note that all uncertainties quoted above
are 2 sigma. The inconsistency between D/H(O) and D/H(N) suggests that either
the O I/H I and/or the N I/H I ratio toward WD1634-573 must be different from
the previously measured average ISM O/H and N/H values. The computation of
D/H(N) from D I/N I is more suspect, since the relative N and H ionization
states could conceivably vary within the LISM, while the O and H ionization
states will be more tightly coupled by charge exchange.Comment: 23 pages, 5 figures; AASTEX v5.0 plus EPSF extensions in mkfig.sty;
accepted by ApJ Supplemen
- âŠ