398 research outputs found
OVII and OVIII line emission in the diffuse soft X-ray background: heliospheric and galactic contributions
We study the 0.57 keV (O VII triplet) and 0.65 keV (O VIII) diffuse emission
generated by charge transfer collisions between solar wind (SW) oxygen ions and
interstellar H and He neutral atoms in the inner Heliosphere. These lines which
dominate the 0.3-1.0 keV energy interval are also produced by hot gas in the
galactic halo (GH) and possibly the Local Interstellar Bubble (LB). We
developed a time-dependent model of the SW Charge-Exchange (SWCX) X-ray
emission, based on the localization of the SW Parker spiral at each instant. We
include input SW conditions affecting three selected fields, as well as
shadowing targets observed with XMM-Newton, Chandra and Suzaku and calculate
X-ray emission fot O VII and O VIII lines. We determine SWCX contamination and
residual emission to attribute to the galactic soft X-ray background. We obtain
ground level intensities and/or simulated lightcurves for each target and
compare to X-ray data. The local 3/4 keV emission (O VII and O VIII) detected
in front of shadowing clouds is found to be entirely explained by the CX
heliospheric emission. No emission from the LB is needed at these energies.
Using the model predictions we subtract the heliospheric contribution to the
measured emission and derive the halo contribution. We also correct for an
error in the preliminary analysis of the Hubble Deep Field North (HDFN).Comment: 21 pages (3 on-line), 10 figures (4 on-line), accepted for
publication in Astronomy and Astrophysic
OVII and OVIII line emission in the diffuse soft X-ray background: heliospheric and galactic contributions
We study the 0.57 keV (O VII triplet) and 0.65 keV (O VIII) diffuse emission
generated by charge transfer collisions between solar wind (SW) oxygen ions and
interstellar H and He neutral atoms in the inner Heliosphere. These lines which
dominate the 0.3-1.0 keV energy interval are also produced by hot gas in the
galactic halo (GH) and possibly the Local Interstellar Bubble (LB). We
developed a time-dependent model of the SW Charge-Exchange (SWCX) X-ray
emission, based on the localization of the SW Parker spiral at each instant. We
include input SW conditions affecting three selected fields, as well as
shadowing targets observed with XMM-Newton, Chandra and Suzaku and calculate
X-ray emission fot O VII and O VIII lines. We determine SWCX contamination and
residual emission to attribute to the galactic soft X-ray background. We obtain
ground level intensities and/or simulated lightcurves for each target and
compare to X-ray data. The local 3/4 keV emission (O VII and O VIII) detected
in front of shadowing clouds is found to be entirely explained by the CX
heliospheric emission. No emission from the LB is needed at these energies.
Using the model predictions we subtract the heliospheric contribution to the
measured emission and derive the halo contribution. We also correct for an
error in the preliminary analysis of the Hubble Deep Field North (HDFN).Comment: 21 pages (3 on-line), 10 figures (4 on-line), accepted for
publication in Astronomy and Astrophysic
Enseigner le français en contexte universitaire à des étudiants non francophones en mobilité : quelle place pour les littératures francophones ?
The role of literature in language teaching has been re-assessed ; it has been documented in numerous work, many of them paying a special attention to francophone literature, which seems to be able to function as a bridge between languages and cultures.
This paper will analyze individual interviews conducted with teachers working in French-language university centers. How do they define this corpus (including, or not, french «hexagonal» literature ?) Which place and functions do they assign to theses litteratures in their teaching practices
Effect of the heliospheric interface on the distribution of interstellar hydrogen atom inside the heliosphere
This paper deals with the modeling of the interstellar hydrogen atoms (H
atoms) distribution in the heliosphere. We study influence of the heliospheric
interface, that is the region of the interaction between solar wind and local
interstellar medium, on the distribution of the hydrogen atoms in vicinity of
the Sun. The distribution of H atoms obtained in the frame of the
self-consistent kinetic-gasdynamic model of the heliospheric interface is
compared with a simplified model which assumes Maxwellian distribution of H
atoms at the termination shock and is called often as 'hot' model. This
comparison shows that the distribution of H atoms is significantly affected by
the heliospheric interface not only at large heliocentric distances, but also
in vicinity of the Sun at 1-5 AU. Hence, for analysis of experimental data
connected with direct or undirect measurements of the interstellar atoms one
necessarily needs to take into account effects of the heliospheric interface.
In this paper we propose a new model that is relatively simple but takes into
account all major effects of the heliospheric interface. This model can be
applied for analysis of backscattered Ly-alpha radiation data obtained on board
of different spacecraft.Comment: published in Astronomy Letter
Regular obstructed categories and TQFT
A proposal of the concept of -regular obstructed categories is given. The
corresponding regularity conditions for mappings, morphisms and related
structures in categories are considered. An n-regular TQFT is introduced. It is
shown the connection of time reversibility with the regularity.Comment: 22 pages in Latex. To be published in J. Math. Phy
Reachability problems for products of matrices in semirings
We consider the following matrix reachability problem: given square
matrices with entries in a semiring, is there a product of these matrices which
attains a prescribed matrix? We define similarly the vector (resp. scalar)
reachability problem, by requiring that the matrix product, acting by right
multiplication on a prescribed row vector, gives another prescribed row vector
(resp. when multiplied at left and right by prescribed row and column vectors,
gives a prescribed scalar). We show that over any semiring, scalar reachability
reduces to vector reachability which is equivalent to matrix reachability, and
that for any of these problems, the specialization to any is
equivalent to the specialization to . As an application of this result and
of a theorem of Krob, we show that when , the vector and matrix
reachability problems are undecidable over the max-plus semiring
. We also show that the matrix, vector, and scalar
reachability problems are decidable over semirings whose elements are
``positive'', like the tropical semiring .Comment: 21 page
The D/H Ratio in Interstellar Gas Towards G191-B2B
We reinvestigate the question of spatial variation of the local D/H
abundance, using both archival GHRS spectra, and new echelle spectra of
G191-B2B obtained with the Space Telescope Imaging Spectrograph (STIS) aboard
HST. Our analysis uses stratified line-blanketed non-LTE model atmosphere
calculations to determine the shape of the intrinsic WD Lyman-alpha profile and
estimate the WD photospheric contamination of the interstellar lines. Although
three velocity components were reported previously towards G191-B2B, we detect
only two velocity components. The first component is at V(hel) ~ 8.6 km/s and
the second at V(hel) ~ 19.3 km/s, which we identify with the Local Interstellar
Cloud (LIC). From the STIS data we derive D/H = 1.60(+0.39,-0.27)X10^-5 for the
LIC component, and D/H > 1.26X10^-5 for the 8.6 km/s component (uncertainties
denote 2-sigma or 95% confidence limits). The STIS data provide no evidence for
local or component-to-component variation in the D/H ratio. Despite using two
velocity components for the profile fitting and using a more physically
realistic WD Lyman-alpha profile for G191-B2B, our re-analysis of the GHRS data
indicates a component-to-component variation as well as a variation of the D/H
ratio in the LISM, neither of which are supported by the newer STIS data. We
believe the most probable cause for this difference is the characterization of
the background due to scattered light in the GHRS and STIS spectrographs. The
two-dimensional MAMA detectors of STIS measure both the spatial and wavelength
dependences of scattered light, allowing more accurate scattered light
corrections than was possible with GHRS.Comment: Accepted for publication in Astrophysical Journal Letters. 10 pages +
3 figures. (Abstract is abridged.
Measuring proper motions of isolated neutron stars with Chandra
The excellent spatial resolution of the Chandra observatory offers the
unprecedented possibility to measure proper motions at X-ray wavelength with
relatively high accuracy using as reference the background of extragalactic or
remote galactic X-ray sources. We took advantage of this capability to
constrain the proper motion of RX J0806.4-4123 and RX J0420.0-5022, two X-ray
bright and radio quiet isolated neutron stars (INSs) discovered by ROSAT and
lacking an optical counterpart. In this paper, we present results from a
preliminary analysis from which we derive 2 sigma upper limits of 76 mas/yr and
138 mas/yr on the proper motions of RX J0806.4-4123 and RX J0420.0-5022
respectively. We use these values together with those of other ROSAT discovered
INSs to constrain the origin, distance and evolutionary status of this
particular group of objects. We find that the tangential velocities of radio
quiet ROSAT neutron stars are probably consistent with those of 'normal'
pulsars. Their distribution on the sky and, for those having accurate proper
motion vectors, their possible birth places, all point to a local population,
probably created in the part of the Gould Belt nearest to the earth.Comment: 8 pages, 3 figures, to appear in Astrophysics and Space Science, in
the proceedings of "Isolated Neutron Stars: from the Interior to the
Surface", edited by D. Page, R. Turolla and S. Zan
- …