2 research outputs found

    Characterisation of Italian and Dutch forestry and agricultural residues for the applicability in the bio-based sector

    Get PDF
    Knowing the accurate composition of biomass is of crucial importance in order to assess and decide on the use and processes to be applied to specific biomass types. In this study, the composition of the lignocellulosic constituents present in forestry, agricultural and under utilised waste residues was assessed. Considering the increased interest on hemicellulose fractions for application in biomaterials and biomolecules, large emphasis has been given in detailing the monomeric constituents of the hemicellulose polymer. Lignin and cellulose, the two other major components of lignocellulosic biomass, were analysed and correlated with the trends in the other constituents. In the samples analysed, the total structural sugars content ranged from 26.0 to 67.5% of the biomass dry weight, indicating high variation between different feedstock and fractions. Hemicellulose concentration and composition also varied significantly (from 38.8% in birch (Betula Pendula Roth) foliage to 22.0 % in rice (Oryza sativa L.) straw) between the feedstock types and within the same feedstock type between different species and different fractions. The extractives content varied greatly between the different species (from 2.66 % to 30.47 % of the biomass dry weight) with high contents in certain fractions of feedstock suggesting more detailed compositional analysis of these extracts is warranted

    Synergetic benefits for a pig farm and local bioeconomy development from extended green biorefinery value chains

    No full text
    As the global population rises, agriculture and industry are under increasing pressure to become more sustainable in meeting this growing demand, while minimizing impacts on global emissions, land use change, and biodiversity. The development of efficient and symbiotic local bioeconomies can help to respond to this challenge by using land, resources, and side streams in efficient ways tailored to the needs of different regions. Green biorefineries offer a unique opportunity for regions with abundant grasslands to use this primary resource more sustainably, providing feed for cows, while also generating feed for monogastric animals, along with the co-production of biomaterials and energy. The current study investigates the impact of a green biorefinery co-product, leaf protein concentrate (LPC), for input to a pig farm, assessing its impact on pig diets, and the extended impact on the bioenergy performance of the pig farm. The study found that LPC replaced soya bean meal at a 50% displacement rate, with pigs showing positive performance in intake and weight gain. Based on laboratory analysis, the resulting pig slurry demonstrated a higher biogas content and 26% higher biomethane potential compared with the control slurry. The findings demonstrate some of the local synergies between agricultural sectors that can be achieved through extended green biorefinery development, and the benefits for local bioeconomy actors. </p
    corecore