10 research outputs found

    Atypical mature T-cell neoplasms: The relevance of the role of flow cytometry

    Get PDF
    Lymphoproliferative disorders are a heterogeneous group of malignant clonal proliferations of lymphocytes whose diagnosis remains challenging, despite diagnostic criteria are now well established, due to their heterogeneity in clinical presentation and immunophenotypic profile. Lymphoid T-cell disorders are more rarely seen than B-cell entities and more difficult to diagnose for the absence of a specific immunophenotypic signature. Flow cytometry is a useful tool in diagnosing T-cell lymphoproliferative disorders since it is not only able to better characterize T-cell neoplasms but also to resolve some very complicated cases, in particular those in which a small size population of neoplastic cells is available for the analysis. Here, we report three patients with mature T-cell neoplasms with atypical clinical and biological features in which analysis of peripheral blood and bone marrow specimens by means of multicolor flow cytometry was very useful to identify and characterize three rare T-cell lymphoproliferative disorders, such as angioimmunoblastic T-cell lymphoma, peripheral T-cell lymphoma not otherwise specified and T-cell prolym-phocytic leukemia. The aim of this case series report is not only to describe three rare cases of lymphoproliferative neoplasms but also to raise awareness that a fast, highly sensitive, and reproducible procedure, such as flow cytometry immunophenotyping, can have a determinant diagnostic role in these patients

    p53 mutation in breast cancer. Correlation with cell kinetics and cell of origin

    No full text
    Aim: Several studies have investigated the expression of the cytokeratins (CKs), vimentin, the epithelial growth factor receptor (EGFR), the oestrogen receptor (ER), and the progesterone receptor (PgR), in breast cancer, but no study has directly compared p53 mutations with these phenotypic and differentiation markers in the same case. The present study was designed to provide some of this information. Methods: The expression of the p53 and bcl-2 proteins was evaluated by immunohistochemistry in relation to phenotypic characteristics and cellular kinetic parameters (mitotic index and apoptotic index) in 37 cases of ductal carcinoma in situ (DCIS) and 27 cases of infiltrating ductal carcinoma (IDC) of the breast. In addition, p53 gene mutation was examined by polymerase chain reaction single strand conformation polymorphism analysis (SSCP). Results: Thirteen cases (eight DCIS and five IDC) showed expression of CK8, CK14, CK18, vimentin, and EGFR, consistent with a stem cell phenotype, whereas 44 cases (27 DCIS and 17 IDC) showed expression of CK8 and CK1, weak or negative expression of CK18, but were negative for vimentin and EGFR, consistent with a luminal cell phenotype. DCIS and IDC cases with a stem cell phenotype were ER/PgR negative and intermediately or poorly differentiated. In contrast, the cases with luminal cell phenotype were ER/PgR positive and well or intermediately differentiated. In addition, intermediately or poorly differentiated cases with a stem cell phenotype showed higher proliferative activity (per cent of MIB-l positive cells) than did intermediately or well differentiated cases with a luminal cell phenotype. Both DCIS and IDC cases with a stem cell phenotype were p53 positive and bcl-2 negative by immunohistochemistry. In IDC, p53 expression was associated with a reduction of both mitotic index and apoptotic index compared with DCIS. Most of the tumours showing a more differentiated phenotype (luminal) were p53 negative and bcl-2 positive. In these cases, cell kinetic parameters increased from DCIS to IDC. These data suggest the existence of subsets of DCIS and IDC that, because of their phenotypic characteristics, could be derived from subpopulations of normal breast cells having different control mechanisms of cell proliferation and neoplastic progression. Conclusions: These results are compatible with the hypothesis that the phenotype of the cell of origin constrains both tumour phenotype and the choice of genetic events; however, the occurrence of p53 mutants by chance during neoplastic transformation cannot be excluded

    Myelodysplastic disorders carrying both isolated del(5q) and JAK2V617F mutation: Concise review, with focus on lenalidomide therapy

    No full text
    The concomitant presence of del(5q) and JAK2V617F mutation is an infrequent event which occurs in rare patients with peculiar cytogenetic, molecular, morphological and clinical features, resembling those of both myelodysplastic syndromes and myeloproliferative neoplasms. Lenalidomide may induce rapid, profound, and long-lasting responses in a subset of these patients. However, the mechanism(s) by which the drug acts in these conditions remain not completely elucidated. A new case report and a review of all cases published so far in this setting are provided. Furthermore, the possibility of categorizing - from a clinical, pathological, and biological point of view - for at least some of these patients as a potential distinct entity is discussed. © 2014 Musto et al. This work is published by Dove Medical Press Limited

    Quantitative in situ evaluation of telomeres in fluorescence in situ hybridization-processed sections of cutaneous melanocytic lesions and correlation with telomerase activity

    No full text
    Telomere length is correlated with cellular ageing and immortalization processes. In some human cancers telomere length measurement has proved to be of diagnostic and prognostic value. Results comparable with the traditional terminal restriction fragment length determination by Southern blotting have been obtained in metaphase and interphase cells in some studies by fluorescence in situ hybridization (FISH) analysis; FISH additionally allows for the quantification of telomeres at the cellular level

    In situ detection of telomeres by fluorescence in situ hybridization and telomerase activity in glioblastoma multiforme: correlation with p53 status, EGFR, c-myc, Mib1, and topoisomerase IIα protein expression.

    No full text
    Aberrations of genes/proteins regulating cell cycle and growth, increased proliferation and telomerase activity (TA) are documentable in glioblastoma multiforme. TA is more frequently detectable in secondary glioblastoma, which is also characterized by p53 mutation/overexpression. Discordant telomere (Te) length values have been reported in glioblastomas with and without TA. In 31 glioblastomas, in which pre-existing astrocytoma was not documented, we compared cases with and without TA for the expression of p53, EGFR, c-Myc, MIB-1 and Topoisomerase IIalpha; p53 mutations were also investigated by SSCP-PCR. Correlations were made with Te parameters [TePs: number (TeNo), length and area] as evaluated by image analysis in interphase nuclei of fluorescence in situ hybridization (FISH)-processed sections. We found no differences in the expression of the proteins evaluated and in TePs, except Te/nuclear area %, which was significantly lower in TA+ cases (p=0.02). TePs were, instead, inversely correlated with TA (p=0.0001). TA was positively correlated with MIB1 staining index in the TA+ cases (p=0.033), which also showed a positive correlation between TeNo and EGFR expression (p=0.042), and a trend towards a negative correlation between TeNo and p53 expression (p=0.05). Tumors overexpressing EGFR had a significantly shorter lifetime (p=0.0001). TeNo seems to be inversely correlated to tumor proliferation and lifetime in glioblastoma multiforme
    corecore