3 research outputs found

    Antimicrobial Activity of Catechol-Containing Biopolymer Poly[3-(3,4-dihydroxyphenyl)glyceric Acid] from Different Medicinal Plants of Boraginaceae Family

    No full text
    This study reports the antimicrobial activities of the biopolymers poly[3-(3,4-dihydoxyphenyl)glyceric acid] (PDHPGA) and poly[2-methoxycarbonyl-3-(3,4-dihydroxyphenyl)oxirane] (PMDHPO), extracted from the six plants of Boraginaceae family: Symphytum asperum (SA), S. caucasicum (SC), S. gr and iflorum (SG), Anchusa italica (AI), Cynoglosum officinale (CO), and Borago officinalis (BO) collected in various parts of Georgia. The study revealed that the antibacterial activities were moderate, and biopolymers from only three plants showed activities against all tested bacteria. Biopolymers from CO stems as well as SC and AI did not show any activity except low activity against a resistant P. aeruginosa strain, which was the most resistant among all three resistant strains. On the other hand, the antifungal activity was better compared to the antibacterial activity. Biopolymers from BO stems exhibited the best activities with MIC/MFC at 0.37–1.00 mg/mL and 0.75–1.5 mg/L, respectively, followed by those from SG stems. Biopolymers from SC and AI roots showed antifungal activities against all six fungi, in contrast to the antibacterial activity, while biopolymers from CO stems and SA roots had activities against four fungi and one fungus, respectively. The sugar-based catechol-containing biopolymers from BO stems demonstrated the best activities among all tested biopolymers against T. viride, P. funiculosum, P. cyclpoium var verucosum, and C. albicans (MIC 0.37 mg/mL). In addition, biopolymers from SG stems were half as active against A. fumigatus and T. viride as ketoconazole. Biopolymers from all plant materials except for CO stems showed higher potency than ketoconazole against T. viride. For the first time, it was shown that all plant materials exhibited better activity against C. albicans, one of the most dreadful fungal species

    Enzymatic Synthesis and Antimicrobial Activity of Oligomer Analogues of Medicinal Biopolymers from Comfrey and Other Species of the Boraginaceae Family

    No full text
    This study reports the first enzymatic synthesis leading to several oligomer analogues of poly[3-(3,4-dihydroxyphenyl)glyceric acid]. This biopolymer, extracted from plants of the Boraginaceae family has shown a wide spectrum of pharmacological properties, including antimicrobial activity. Enzymatic ring opening polymerization of 2-methoxycarbonyl-3-(3,4-dibenzyloxyphenyl)oxirane (MDBPO) using lipase from Candida rugosa leads to formation of poly[2-methoxycarbonyl-3-(3,4-dibenzyloxyphenyl)oxirane] (PMDBPO), with a degree of polymerization up to 5. Catalytic debenzylation of PMDBPO using H2 on Pd/C yields poly[2-methoxycarbonyl-3-(3,4-dihydroxyphenyl)oxirane] (PMDHPO) without loss in molecular mass. Antibacterial assessment of natural polyethers from different species of Boraginaceae family Symhytum asperum, S. caucasicum,S. grandiflorum, Anchusa italica, Cynoglossum officinale, and synthetic polymers, poly[2-methoxycarbonyl-3-(3,4-dimethoxyphenyl)oxirane (PMDMPO) and PMDHPO, reveals that only the synthetic analogue produced in this study (PMDHPO) exhibits a promising antimicrobial activity against pathogenic strains S.aureus ATCC 25923 and E.coli ATCC 25922 the minimum inhibitory concentration (MIC) being 100 µg/mL

    New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking.

    No full text
    BACKGROUND Phenolic acids (caffeic-, ferulic and p-coumaric acid) are widely distributed in the plant kingdom and exhibit broad spectrum of biological activities, including antimicrobial activity. OBJECTIVE The goal of this paper is the synthesis of some caffeic acid derivatives selected based on computer-aided predictions and evaluate their in vitro antimicrobial properties against Gram positive and Gram negative bacteria and also a series of fungi. METHODS In silico prediction of biological activity was used to identify the most promising structures for synthesis and biological testing, and the putative mechanisms of their antimicrobial action. The designed compounds were synthesized using classical organic synthesis methods. The antimicrobial activity was studied using microdilution method. RESULTS Twelve tested compounds have shown good antibacterial activity. Five out of twelve tested compounds appeared to be more active than the reference drugs ampicillin and streptomycin. Despite that all compounds exhibited good activity against all bacteria tested, the sensitivity of bacteria towards compounds in general was different. The evaluation of antifungal activity revealed that all compounds were more active than ketoconazole, while seven compounds (2, 3, 4, 5, 7, 8 and 12) appeared to be more active than bifonazole. Docking results indicate that gyrase inhibition is the putative mechanism of antibacterial action while the inhibition of 14α-demethylase may be responsible for antifungal action. Prediction of cytotoxicity by PROTOX showed that compounds are not toxic (LD50 1000-2000 mg/kg). CONCLUSION Thirteen compounds, from which six are new ones, were synthesized, and twelve compounds were tested for antimicrobial activity. The studied compounds appeared to be promising potent and non-toxic antimicrobials, which could be considered as leads for new pharmaceutical agents
    corecore