3,972 research outputs found

    GMRT observations of X-shaped radio sources

    Get PDF
    We present results from a study of X-shaped sources based on observations using the Giant Metrewave Radio Telescope (GMRT). These observations were motivated by our low frequency study of 3C 223.1 (Lal & Rao 2005), an X-shaped radio source, which showed that the wings (or low-surface-brightness jets) have flatter spectral indices than the active lobes (or high-surface-brightness jets), a result not easily explained by most models. We have now obtained GMRT data at 240 and 610 MHz for almost all the known X-shaped radio sources and have studied the distribution of the spectral index across the sources. While the radio morphologies of all the sources at 240 and 610 MHz show the characteristic X-shape, the spectral characteristics of the X-shaped radio sources, seem to fall into three categories, namely, sources in which (A) the wings have flatter spectral indices than the active lobes, (B) the wings and the active lobes have comparable spectral indices, and (C) the wings have steeper spectral indices than the active lobes. We discuss the implications of the new observational results on the various formation models that have been proposed for X-shaped sources.Comment: The paper contains 12 figures and 3 tables, accepted for publication in MNRAS Main Journal, please note, some figures are of lower qualit

    Experimental study of magneto-superconductor RuSr2Eu1.5Ce0.5Cu2O10: Effect of Mo doping on magnetic behavior and Tc variation

    Get PDF
    Mo doped ruthenocuprates Ru1-xMoxSr2Eu1.5Ce0.5Cu2O10 are synthesized for x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, and their magnetic and superconducting properties are studied. It has been found that the magnetic transition temperature TZFCpeak, which corresponds to the appearance of weak ferromagnetic effect, decreases from its value of 75 K for x = 0.0 to 22 K, 25 K and 18 K, respectively for the x = 0.2, 0.4 and 0.6 samples. Another finding is that the magnetic susceptibility reduces at TZFCpeak by a factor of about 6, 85 and 413 for x = 0.2, 0.4, and 0.6 respectively. The samples of x = 0.8 and 1.0 are found to have no magnetic or superconducting effects. The values of the superconducting transition temperature are obtained from the resistivity versus temperature data. An important result is that Tc increases by 4.5 K and 7.0 K for x = 0.2 and 0.4 respectively, and then decreases by 17 K for x = 0.6. The observed variation of Tc with x has been explained in terms of a theory which combines the effects of weakening magnetic behavior and reducing carrier concentration in a phenomenological manner. The resulting theory is found to provide a good agreement with the observed value of Tc.Comment: 14 pages with Text + Figs. To Appear in PHYS. REV. B, Ist Jan. 2006 issu

    Fluctuations of the partial filling factors in competitive RSA from binary mixtures

    Full text link
    Competitive random sequential adsorption on a line from a binary mix of incident particles is studied using both an analytic recursive approach and Monte Carlo simulations. We find a strong correlation between the small and the large particle distributions so that while both partial contributions to the fill factor fluctuate widely, the variance of the total fill factor remains relatively small. The variances of partial contributions themselves are quite different between the smaller and the larger particles, with the larger particle distribution being more correlated. The disparity in fluctuations of partial fill factors increases with the particle size ratio. The additional variance in the partial contribution of smaller particle originates from the fluctuations in the size of gaps between larger particles. We discuss the implications of our results to semiconductor high-energy gamma detectors where the detector energy resolution is controlled by correlations in the cascade energy branching process.Comment: 19 pages, 8 figure

    Power optimized programmable embedded controller

    Full text link
    Now a days, power has become a primary consideration in hardware design, and is critical in computer systems especially for portable devices with high performance and more functionality. Clock-gating is the most common technique used for reducing processor's power. In this work clock gating technique is applied to optimize the power of fully programmable Embedded Controller (PEC) employing RISC architecture. The CPU designed supports i) smart instruction set, ii) I/O port, UART iii) on-chip clocking to provide a range of frequencies , iv) RISC as well as controller concepts. The whole design is captured using VHDL and is implemented on FPGA chip using Xilinx .The architecture and clock gating technique together is found to reduce the power consumption by 33.33% of total power consumed by this chip.Comment: 11 pages,11 figures,International Journal Publicatio

    Junction of several weakly interacting quantum wires: a renormalization group study

    Get PDF
    We study the conductance of three or more semi-infinite wires which meet at a junction. The electrons in the wires are taken to interact weakly with each other through a short-range density-density interaction, and they encounter a general scattering matrix at the junction. We derive the renormalization group equations satisfied by the S-matrix, and we identify its fixed points and their stabilities. The conductance between any pair of wires is then studied as a function of physical parameters such as temperature. We discuss the possibility of observing the effects of junctions in present day experiments, such as the four-terminal conductance of a quantum wire and crossed quantum wires.Comment: RevTeX, 13 pages, including 4 eps figure
    corecore