1,321 research outputs found
Generating Finite Dimensional Integrable Nonlinear Dynamical Systems
In this article, we present a brief overview of some of the recent progress
made in identifying and generating finite dimensional integrable nonlinear
dynamical systems, exhibiting interesting oscillatory and other solution
properties, including quantum aspects. Particularly we concentrate on Lienard
type nonlinear oscillators and their generalizations and coupled versions.
Specific systems include Mathews-Lakshmanan oscillators, modified Emden
equations, isochronous oscillators and generalizations. Nonstandard Lagrangian
and Hamiltonian formulations of some of these systems are also briefly touched
upon. Nonlocal transformations and linearization aspects are also discussed.Comment: To appear in Eur. Phys. J - ST 222, 665 (2013
Existence of anticipatory, complete and lag synchronizations in time-delay systems
Existence of different kinds of synchronizations, namely anticipatory,
complete and lag type synchronizations (both exact and approximate), are shown
to be possible in time-delay coupled piecewise linear systems. We deduce
stability condition for synchronization of such unidirectionally coupled
systems following Krasovskii-Lyapunov theory. Transition from anticipatory to
lag synchronization via complete synchronization as a function of coupling
delay is discussed. The existence of exact synchronization is preceded by a
region of approximate synchronization from desynchronized state as a function
of a system parameter, whose value determines the stability condition for
synchronization. The results are corroborated by the nature of similarity
functions. A new type of oscillating synchronization that oscillates between
anticipatory, complete and lag synchronization, is identified as a consequence
of delay time modulation with suitable stability condition.Comment: 5 Figures 9 page
Delay time modulation induced oscillating synchronization and intermittent anticipatory/lag and complete synchronizations in time-delay nonlinear dynamical systems
Existence of a new type of oscillating synchronization that oscillates
between three different types of synchronizations (anticipatory, complete and
lag synchronizations) is identified in unidirectionally coupled nonlinear
time-delay systems having two different time-delays, that is feedback delay
with a periodic delay time modulation and a constant coupling delay.
Intermittent anticipatory, intermittent lag and complete synchronizations are
shown to exist in the same system with identical delay time modulations in both
the delays. The transition from anticipatory to complete synchronization and
from complete to lag synchronization as a function of coupling delay with
suitable stability condition is discussed. The intermittent anticipatory and
lag synchronizations are characterized by the minimum of similarity functions
and the intermittent behavior is characterized by a universal asymptotic
power law distribution. It is also shown that the delay time carved
out of the trajectories of the time-delay system with periodic delay time
modulation cannot be estimated using conventional methods, thereby reducing the
possibility of decoding the message by phase space reconstruction.Comment: accepted for publication in CHAOS, revised in response to referees
comment
Transition from anticipatory to lag synchronization via complete synchronization in time-delay systems
The existence of anticipatory, complete and lag synchronization in a single
system having two different time-delays, that is feedback delay and
coupling delay , is identified. The transition from anticipatory to
complete synchronization and from complete to lag synchronization as a function
of coupling delay with suitable stability condition is discussed. The
existence of anticipatory and lag synchronization is characterized both by the
minimum of similarity function and the transition from on-off intermittency to
periodic structure in laminar phase distribution.Comment: 14 Pages and 12 Figure
Extended Prelle-Singer Method and Integrability/Solvability of a Class of Nonlinear th Order Ordinary Differential Equations
We discuss a method of solving order scalar ordinary differential
equations by extending the ideas based on the Prelle-Singer (PS) procedure for
second order ordinary differential equations. We also introduce a novel way of
generating additional integrals of motion from a single integral. We illustrate
the theory for both second and third order equations with suitable examples.
Further, we extend the method to two coupled second order equations and apply
the theory to two-dimensional Kepler problem and deduce the constants of motion
including Runge-Lenz integral.Comment: 18 pages, Article dedicated to Professor F. Calogero on his
70thbirthda
- …