3 research outputs found

    FleXPath: flexible structure and full-text querying for XML

    No full text
    Querying XML data is a well-explored topic with powerful database-style query languages such as XPath and XQuery set to become W3C standards. An equally compelling paradigm for querying XML documents is full-text search on textual content. In this paper, we study fundamental challenges that arise when we try to integrate these two querying paradigms. While keyword search is based on approximate matching, XPath has exact match semantics. We address this mismatch by considering queries on structure as a "template", and looking for answers that best match this template and the full-text search. To achieve this, we provide an elegant definition of relaxation on structure and define primitive operators to span the space of relaxations. Query answering is now based on ranking potential answers on structural and full-text search conditions. We set out certain desirable principles for ranking schemes and propose natural ranking schemes that adhere to these principles. We develop efficient algorithms for answering top-K queries and discuss results from a comprehensive set of experiments that demonstrate the utility and scalability of the proposed framework and algorithms.© AC

    On Efficient Approximate Queries over Machine Learning Models

    Full text link
    The question of answering queries over ML predictions has been gaining attention in the database community. This question is challenging because the cost of finding high quality answers corresponds to invoking an oracle such as a human expert or an expensive deep neural network model on every single item in the DB and then applying the query. We develop a novel unified framework for approximate query answering by leveraging a proxy to minimize the oracle usage of finding high quality answers for both Precision-Target (PT) and Recall-Target (RT) queries. Our framework uses a judicious combination of invoking the expensive oracle on data samples and applying the cheap proxy on the objects in the DB. It relies on two assumptions. Under the Proxy Quality assumption, proxy quality can be quantified in a probabilistic manner w.r.t. the oracle. This allows us to develop two algorithms: PQA that efficiently finds high quality answers with high probability and no oracle calls, and PQE, a heuristic extension that achieves empirically good performance with a small number of oracle calls. Alternatively, under the Core Set Closure assumption, we develop two algorithms: CSC that efficiently returns high quality answers with high probability and minimal oracle usage, and CSE, which extends it to more general settings. Our extensive experiments on five real-world datasets on both query types, PT and RT, demonstrate that our algorithms outperform the state-of-the-art and achieve high result quality with provable statistical guarantees.Comment: Submitted to VLDB 2023, 16 pages, 10 figures; added formal claims for section
    corecore