3 research outputs found

    Soil-gas diffusivity-based characterization of variably saturated agricultural topsoils

    Get PDF
    Soil-gas diffusivity and its variation with soil moisture plays a fundamental role in diffusion-controlled migration of climate-impact gases from different terrestrial agroecosystems including cultivated soils and managed pasture systems. The wide contrast in soil texture and structure (e.g., density, soil aggregation) in agriculture topsoils (0–10 cm) makes it challenging for soil-gas diffusivity predictive models to make accurate predictions across different moisture conditions. This study characterized gas diffusivity and gas-phase tortuosity in soils sampled from managed pasture and cultivated sites in Sri Lanka at 0–10 cm depth, together with selected soil-gas diffusivity data from the literature. Soil-gas diffusivity was measured using a one-chamber diffusion apparatus using N₂ and O₂ as experimental gases. The measured diffusivity, together with literature data representing both intact and repacked soils, were tested against five existing widely known gas diffusivity predictive models. The tested models tended to mischaracterize the two-region behavior in some of the aggregated soils, suggesting the need of soil-specific diffusivity models to better describe gas diffusivity in agricultural soils. We suggested a new parametric two-region model, developed in line with literature-based models, to represent both unimodal and bimodal/two-region behavior of selected soils. The new model statistically outperformed the existing predictive models for both intact and repacked soils and, hence, demonstrated its applicability to better characterize site-specific greenhouse gas emissions under different soil water regimes

    Impact of water management on methane emission dynamics in Sri Lankan paddy ecosystems

    Get PDF
    Paddy ecosystems constitute a dominant source of greenhouse gases, particularly of methane (CH₄), due to the continuous flooding (CF) practiced under conventional paddy cultivation. A new management method, namely alternative wetting and draining (AWD) (i.e., flooding whenever surface water levels decline to 15 cm below the soil surface), is an emerging practice developed to mitigate CH₄ emissions while providing an optimal solution for freshwater scarcity. Despite extensive paddy cultivation in Sri Lanka, no systematic research study has been conducted to investigate CH₄ emissions under different water management practices. Thus, field experiments were conducted in Sri Lanka to investigate the feedback of controlled water management on seasonal and diel variation of CH₄ emission, water consumption, and crop productivity. Adopting the same rice variety, two water management methods, continuous flooding (CF) and alternative wetting and draining (AWD), were compared with plants (W/P) and without plants (N/P) present. The emission of CH₄ was measured using the static closed chamber method. The results show a 32% reduction in cumulative CH₄ emission, on average, under AWD when compared to CF. The yield under the AWD was slightly higher than that of CF. Although it was not statistically significant (p > 0.05) there was not any reduction in yield in AWD than in CF. The total water saving under AWD ranged between 27–35% when compared to CF. Thus, the results support (without considering the effect of nitrous oxide) AWD as a promising method for mitigating CH₄ emissions while preserving freshwater and maintaining grain yield in paddy systems

    Effects of soil moisture on simulated methane flow under varying levels of soil compaction

    No full text
    Soil density plays an important role in regulating the migration of greenhouse gases from terrestrial soils to the atmosphere. Soil moisture is one of the main soil physical controls determining the fate and transport of gases in soils. This study investigated the transport of methane (CH₄) originating from a simulated CH₄ source within a variably compacted pasture soil. Simulations were carried out for dry and variably saturated soils. Steady-state methane flow was simulated as a density-dependent, multiphase flow considering a multicomponent mixture of CH₄, water vapor and air, under different soil moisture conditions. We used measured soil–water characteristic (SWC) and gas diffusivity data at five density levels (1.1, 1.2, 1.3, 1.4, and 1.5 Mg m‾³) to parameterize predictive models. Permeability was estimated using an existing SWC-based saturated hydraulic conductivity function. Results show a distinct effect of soil density on CH₄ concentration profiles within the soil. Clear effects of soil moisture on CH₄ transport could also be seen in differentially compacted soils. Relatively smaller CH₄ concentrations were observed in dry soils where permeability, gas diffusivity, and air-filled porosity were higher. With increasing density, the profile-accumulated concentrations >0.3% increased up to 200 times under the dry condition. In moist soils, on the other hand, smaller air-filled porosity and higher moisture-controlled tortuosity resulted in reduced permeability and gas diffusivity, yielding high CH₄ concentrations in the soil profile with only a maximum fivefold increase in the accumulated concentration with increasing density
    corecore