2 research outputs found

    The Properties of Tannery Waste Addition as a Filler Based on Two Types of Polymer Matrices: Poly(Butylene Adipate-Co-Terephthalate) (PBAT) and Poly(Butylene Succinate) (PBS)

    No full text
    Wet blue leather is a waste produced by the leather industry. It is a difficult waste product to dispose of, and if not disposed of properly, it will affect the environment and cause toxicity. Therefore, recycling was considered as an alternative to waste disposal. In this study, polymer composites were prepared from two types of polymers, poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS), and wet blue leather (WBL). A twin screw extruder and injection molding were used to prepare the composites. The effect of polymer type and WBL content (5, 10, and 15 wt%) on mechanical properties, thermal properties, flammability, MFI, water absorption, and morphology was investigated. All the polymer composites showed an increase in tensile and flexural strength, Young’s modulus, and water absorption but decreased in elongation at break, impact strength, and flammability compared to neat polymers

    Use of TBzTD as Noncarcinogenic Accelerator for ENR/SiO2 Nanocomposites: Cured Characteristics, Mechanical Properties, Thermal Behaviors, and Oil Resistance

    No full text
    This study reported the use of tetrabenzylthiuram disulphide (TBzTD) as a noncarcinogenic accelerator in a traditional sulfur curing system of epoxidized natural rubber (ENR)/nanosilica (nSiO2) composites. ENR used in this work was synthesized via in situ epoxidation of natural rubber (NR) in the presence of performic acid generated from the reaction of formic acid and hydrogen peroxide at 50°C for 8 h to acquire the epoxide content of about 40 mol%. Accordingly, the resulting ENR was referred to as ENR 40. The curing characteristics, mechanical properties, thermal behaviors, dynamic mechanical properties, and oil resistance of ENR 40/nSiO2 nanocomposites filled with three loadings of nSiO2 (1, 2, and 3 parts per hundred parts of rubber) were investigated and compared with NR and neat ENR 40. The results revealed that the scorch and cure times of ENR 40/nSiO2 nanocomposites were slightly longer than those of NR but slightly shorter than those of ENR 40. The tensile properties and tear strength for both before and after aging of all ENR 40/nSiO2 nanocomposites were higher than those of ENR 40, while the glass transition temperature, storage modulus at −65°C, thermal stability, and oil resistance of ENR 40/nSiO2 nanocomposites were higher than those of NR and ENR 40
    corecore