41 research outputs found

    Probing Brain Context-Sensitivity with Masked-Attention Generation

    Full text link
    Two fundamental questions in neurolinguistics concerns the brain regions that integrate information beyond the lexical level, and the size of their window of integration. To address these questions we introduce a new approach named masked-attention generation. It uses GPT-2 transformers to generate word embeddings that capture a fixed amount of contextual information. We then tested whether these embeddings could predict fMRI brain activity in humans listening to naturalistic text. The results showed that most of the cortex within the language network is sensitive to contextual information, and that the right hemisphere is more sensitive to longer contexts than the left. Masked-attention generation supports previous analyses of context-sensitivity in the brain, and complements them by quantifying the window size of context integration per voxel.Comment: 2 pages, 2 figures, CCN 202

    Language acquisition: do children and language models follow similar learning stages?

    Full text link
    During language acquisition, children follow a typical sequence of learning stages, whereby they first learn to categorize phonemes before they develop their lexicon and eventually master increasingly complex syntactic structures. However, the computational principles that lead to this learning trajectory remain largely unknown. To investigate this, we here compare the learning trajectories of deep language models to those of children. Specifically, we test whether, during its training, GPT-2 exhibits stages of language acquisition comparable to those observed in children aged between 18 months and 6 years. For this, we train 48 GPT-2 models from scratch and evaluate their syntactic and semantic abilities at each training step, using 96 probes curated from the BLiMP, Zorro and BIG-Bench benchmarks. We then compare these evaluations with the behavior of 54 children during language production. Our analyses reveal three main findings. First, similarly to children, the language models tend to learn linguistic skills in a systematic order. Second, this learning scheme is parallel: the language tasks that are learned last improve from the very first training steps. Third, some - but not all - learning stages are shared between children and these language models. Overall, these results shed new light on the principles of language acquisition, and highlight important divergences in how humans and modern algorithms learn to process natural language.Comment: Accepted to ACL 2023. *Equal Contributio

    The emergence of number and syntax units in LSTM language models

    Get PDF
    Recent work has shown that LSTMs trained on a generic language modeling objective capture syntax-sensitive generalizations such as long-distance number agreement. We have however no mechanistic understanding of how they accomplish this remarkable feat. Some have conjectured it depends on heuristics that do not truly take hierarchical structure into account. We present here a detailed study of the inner mechanics of number tracking in LSTMs at the single neuron level. We discover that long-distance number information is largely managed by two `number units'. Importantly, the behaviour of these units is partially controlled by other units independently shown to track syntactic structure. We conclude that LSTMs are, to some extent, implementing genuinely syntactic processing mechanisms, paving the way to a more general understanding of grammatical encoding in LSTMs.Comment: To appear in Proceedings of NAACL, Minneapolis, MN, 201

    Neural Language Models are not Born Equal to Fit Brain Data, but Training Helps

    Get PDF
    International audienceNeural Language Models (NLMs) have made tremendous advances during the last years, achieving impressive performance on various linguistic tasks. Capitalizing on this, studies in neuroscience have started to use NLMs to study neural activity in the human brain during language processing. However, many questions remain unanswered regarding which factors determine the ability of a neural language model to capture brain activity (aka its 'brain score'). Here, we make first steps in this direction and examine the impact of test loss, training corpus and model architecture (comparing GloVe, LSTM, GPT-2 and BERT), on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook. We find that (1) untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words, with the untrained LSTM outperforming the transformerbased models, being less impacted by the effect of context; (2) that training NLP models improves brain scores in the same brain regions irrespective of the model's architecture; (3) that Perplexity (test loss) is not a good predictor of brain score; (4) that training data have a strong influence on the outcome and, notably, that off-the-shelf models may lack statistical power to detect brain activations. Overall, we outline the impact of modeltraining choices, and suggest good practices for future studies aiming at explaining the human language system using neural language models

    Limitations of conventional drinking water technologies in pollutant removal

    Get PDF
    This chapter gives an overview of the more traditional drinking water treatment from ground and surface waters. Water is treated to meet the objectives of drinking water quality and standards. Water treatment and water quality are therefore closely connected. The objectives for water treatment are to prevent acute diseases by exposure to pathogens, to prevent long-term adverse health effects by exposure to chemicals and micropollutants, and finally to create a drinking water that is palatable and is conditioned in such a way that transport from the treatment works to the customer will not lead to quality deterioration. Traditional treatment technologies as described in this chapter are mainly designed to remove macro parameters such as suspended solids, natural organic matter, dissolved iron and manganese, etc. The technologies have however only limited performance for removal of micropollutants. Advancing analytical technologies and increased and changing use of compounds however show strong evidence of new and emerging threats to drinking water quality. Therefore, more advanced treatment technologies are required.</p

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Representations of syntactic structures and features in LSTM networks

    No full text

    What Limits Our Capacity to Process Nested Long-Range Dependencies in Sentence Comprehension?

    No full text
    International audienceSentence comprehension requires inferring, from a sequence of words, the structure of syntactic relationships that bind these words into a semantic representation. Our limited ability to build some specific syntactic structures, such as nested center-embedded clauses (e.g., “The dog that the cat that the mouse bit chased ran away”), suggests a striking capacity limitation of sentence processing, and thus offers a window to understand how the human brain processes sentences. Here, we review the main hypotheses proposed in psycholinguistics to explain such capacity limitation. We then introduce an alternative approach, derived from our recent work on artificial neural networks optimized for language modeling, and predict that capacity limitation derives from the emergence of sparse and feature-specific syntactic units. Unlike psycholinguistic theories, our neural network-based framework provides precise capacity-limit predictions without making any a priori assumptions about the form of the grammar or parser. Finally, we discuss how our framework may clarify the mechanistic underpinning of language processing and its limitations in the human brain
    corecore