269 research outputs found

    Baryogenesis in f(R,Lm)f(R,L_m) gravity

    Full text link
    This paper aims to recreate the gravitational baryogenesis epoch in the framework of the f(R,Lm)f(R,L_m) theory of gravity, where RR and LmL_m are the curvature scalar and the matter Langragian, respectively. In particular, we examine the model, f(R,Lm)=R2+Lmα+ζf(R,L_m) = \frac{R}{2} + L_m ^{\alpha} + \zeta, under the supposition that the universe is saturated with dark energy and perfect fluid, with a non-zero baryon to entropy ratio during a radiation dominance era. We confine the model with the gravitational baryogenesis scenario, emphasizing the appropriate values of model parameters compatible with the baryon-to-entropy ratio observation data. Our study found that f(R,Lm)f(R,L_m) gravity can considerably and steadily make a contribution to the phenomenon of gravitational baryogenesis.Comment: Physics of the Dark Universe published versio

    Appearance of a double bubble in achalasia cardia: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Achalasia cardia is characterized by failure of the lower esophageal sphincter to relax in response to swallowing and by an absence of peristalsis in the esophageal body. Absence of a gastric air bubble is a well known radiological finding. Pneumatic balloon dilatation results in reappearance of the gastric bubble.</p> <p>Case presentation</p> <p>We report the case of a 43-year-old Indian man with achalasia cardia whose chest X-ray at the time of presentation showed an air bubble in the gastric region causing a diagnostic quandary. Successful dilatation of the lower esophageal sphincter resulted in the appearance of another air bubble in the gastric region. Proper analysis showed that the first bubble was actually a colonic air bubble of the splenic flexure and the appearance of the second bubble was the anticipated gastric air bubble.</p> <p>Conclusion</p> <p>In patients presenting with achalasia cardia, a colonic air bubble may be seen in the gastric region causing diagnostic difficulty. In these patients, a gastric air bubble may appear after pneumatic dilatation. At the end of the procedure, there will be two air bubbles ("double bubble"): a colonic and a gastric air bubble. To our knowledge, this finding has not been reported in the literature thus far.</p

    A lightweight secure adaptive approach for internet-of-medical-things healthcare applications in edge-cloud-based networks

    Get PDF
    Mobile-cloud-based healthcare applications are increasingly growing in practice. For instance, healthcare, transport, and shopping applications are designed on the basis of the mobile cloud. For executing mobile-cloud applications, offloading and scheduling are fundamental mechanisms. However, mobile healthcare workflow applications with these methods are widely ignored, demanding applications in various aspects for healthcare monitoring, live healthcare service, and biomedical firms. However, these offloading and scheduling schemes do not consider the workflow applications' execution in their models. This paper develops a lightweight secure efficient offloading scheduling (LSEOS) metaheuristic model. LSEOS consists of light weight, and secure offloading and scheduling methods whose execution offloading delay is less than that of existing methods. The objective of LSEOS is to run workflow applications on other nodes and minimize the delay and security risk in the system. The metaheuristic LSEOS consists of the following components: adaptive deadlines, sorting, and scheduling with neighborhood search schemes. Compared to current strategies for delay and security validation in a model, computational results revealed that the LSEOS outperformed all available offloading and scheduling methods for process applications by 10% security ratio and by 29% regarding delays

    MetaSleepLearner: A Pilot Study on Fast Adaptation of Bio-signals-Based Sleep Stage Classifier to New Individual Subject Using Meta-Learning.

    Get PDF
    Identifying bio-signals based-sleep stages requires time-consuming and tedious labor of skilled clinicians. Deep learning approaches have been introduced in order to challenge the automatic sleep stage classification conundrum. However, the difficulties can be posed in replacing the clinicians with the automatic system due to the differences in many aspects found in individual bio-signals, causing the inconsistency in the performance of the model on every incoming individual. Thus, we aim to explore the feasibility of using a novel approach, capable of assisting the clinicians and lessening the workload. We propose the transfer learning framework, entitled MetaSleepLearner, based on Model Agnostic Meta-Learning (MAML), in order to transfer the acquired sleep staging knowledge from a large dataset to new individual subjects. The framework was demonstrated to require the labelling of only a few sleep epochs by the clinicians and allow the remainder to be handled by the system. Layer-wise Relevance Propagation (LRP) was also applied to understand the learning course of our approach. In all acquired datasets, in comparison to the conventional approach, MetaSleepLearner achieved a range of 5.4% to 17.7% improvement with statistical difference in the mean of both approaches. The illustration of the model interpretation after the adaptation to each subject also confirmed that the performance was directed towards reasonable learning. MetaSleepLearner outperformed the conventional approaches as a result from the fine-tuning using the recordings of both healthy subjects and patients. This is the first work that investigated a non-conventional pre-training method, MAML, resulting in a possibility for human-machine collaboration in sleep stage classification and easing the burden of the clinicians in labelling the sleep stages through only several epochs rather than an entire recording

    Large out-of-plane spin-orbit torque in topological Weyl semimetal candidate TaIrTe4

    Full text link
    Topological quantum materials, with novel spin textures and broken crystal symmetries are suitable candidates for spintronic memory technologies. Their unique electronic properties, such as protected surface states and exotic quasiparticles, can provide an out-of-plane spin polarized current needed for external field free magnetization switching of magnets with perpendicular magnetic anisotropy. Conventional spin-orbit torque materials, such as heavy metals and topological insulators, provide only an in-plane spin polarized current, and recently explored materials with lower crystal symmetries provide very low out-of-plane spin polarized current components, which is not suitable for energy-efficient spin-orbit torque (SOT) applications. Here, we demonstrate a large out-of-plane damping-like SOT at room temperature using a topological Weyl semimetal candidate TaIrTe4 with a lower crystal symmetry. We performed spin-orbit torque ferromagnetic resonance (STFMR) experiments in a TaIrTe4/Ni80Fe20 heterostructure and observed a large out-of-plane damping-like SOT efficiency. The out-of-plane spin Hall conductivity is estimated to be an order of magnitude higher than the reported values in other materials. These findings of high spin Hall conductivity and large out-of-plane SOT efficiency are suitable for the development of energy efficient and external field-free spintronic devices

    Strong in-plane magnetic anisotropy (Co0.15Fe0.85)5GeTe2/graphene van der Waals heterostructure spin-valve at room temperature

    Full text link
    Van der Waals (vdW) magnets are promising owing to their tunable magnetic properties with doping or alloy composition, where the strength of magnetic interactions, their symmetry, and magnetic anisotropy can be tuned according to the desired application. However, most of the vdW magnet based spintronic devices are so far limited to cryogenic temperatures with magnetic anisotropies favouring out-of-plane or canted orientation of the magnetization. Here, we report room-temperature lateral spin-valve devices with strong in-plane magnetic anisotropy of the vdW ferromagnet (Co0.15Fe0.85)5GeTe2 (CFGT) in heterostructures with graphene. Magnetization measurements reveal above room-temperature ferromagnetism in CFGT with a strong in-plane magnetic anisotropy. Density functional theory calculations show that the magnitude of the anisotropy depends on the Co concentration and is caused by the substitution of Co in the outermost Fe layer. Heterostructures consisting of CFGT nanolayers and graphene were used to experimentally realize basic building blocks for spin valve devices such as efficient spin injection and detection. The spin transport and Hanle spin precession measurements prove a strong in-plane and negative spin polarization at the interface with graphene, which is supported by the calculated spin-polarized density of states of CFGT. The in-plane magnetization of CFGT at room temperature proves its usefulness in graphene lateral spin-valve devices, thus opening further opportunities for spintronic technologies

    Potent blockchain-rnabled socket RPC Internet of Healthcare Things (IoHT) framework for medical enterprises

    Get PDF
    Present-day intelligent healthcare applications offer digital healthcare services to users in a distributed manner. The Internet of Healthcare Things (IoHT) is the mechanism of the Internet of Things (IoT) found in different healthcare applications, with devices that are attached to external fog cloud networks. Using different mobile applications connecting to cloud computing, the applications of the IoHT are remote healthcare monitoring systems, high blood pressure monitoring, online medical counseling, and others. These applications are designed based on a client–server architecture based on various standards such as the common object request broker (CORBA), a service-oriented architecture (SOA), remote method invocation (RMI), and others. However, these applications do not directly support the many healthcare nodes and blockchain technology in the current standard. Thus, this study devises a potent blockchain-enabled socket RPC IoHT framework for medical enterprises (e.g., healthcare applications). The goal is to minimize service costs, blockchain security costs, and data storage costs in distributed mobile cloud networks. Simulation results show that the proposed blockchain-enabled socket RPC minimized the service cost by 40%, the blockchain cost by 49%, and the storage cost by 23% for healthcare applications

    Whole plant cannabis extracts in the treatment of spasticity in multiple sclerosis: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cannabis therapy has been considered an effective treatment for spasticity, although clinical reports of symptom reduction in multiple sclerosis (MS) describe mixed outcomes. Recently introduced therapies of combined Δ<sup>9</sup>-tetrahydrocannabinol (THC) and cannabidiol (CBD) extracts have potential for symptom relief with the possibility of reducing intoxication and other side effects. Although several past reviews have suggested that cannabinoid therapy provides a therapeutic benefit for symptoms of MS, none have presented a methodical investigation of newer cannabinoid treatments in MS-related spasticity. The purpose of the present review was to systematically evaluate the effectiveness of combined THC and CBD extracts on MS-related spasticity in order to increase understanding of the treatment's potential effectiveness, safety and limitations.</p> <p>Methods</p> <p>We reviewed MEDLINE/PubMed, Ovid, and CENTRAL electronic databases for relevant studies using randomized controlled trials. Studies were included only if a combination of THC and CBD extracts was used, and if pre- and post-treatment assessments of spasticity were reported.</p> <p>Results</p> <p>Six studies were systematically reviewed for treatment dosage and duration, objective and subjective measures of spasticity, and reports of adverse events. Although there was variation in the outcome measures reported in these studies, a trend of reduced spasticity in treated patients was noted. Adverse events were reported in each study, however combined TCH and CBD extracts were generally considered to be well-tolerated.</p> <p>Conclusion</p> <p>We found evidence that combined THC and CBD extracts may provide therapeutic benefit for MS spasticity symptoms. Although some objective measures of spasticity noted improvement trends, there were no changes found to be significant in post-treatment assessments. However, subjective assessment of symptom relief did often show significant improvement post-treatment. Differences in assessment measures, reports of adverse events, and dosage levels are discussed.</p

    Deep brain stimulation for obsessive-compulsive disorder and treatment-resistant depression: systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In spite of advances in psychotherapy and pharmacotherapy, there are still a significant number of patients with depression and obsessive-compulsive disorder that are not aided by either intervention. Although still in the experimental stage, deep brain stimulation (DBS) offers many advantages over other physically-invasive procedures as a treatment for these psychiatric disorders. The purpose of this study is to systematically review reports on clinical trials of DBS for obsessive-compulsive disorder (OCD) and treatment-resistant depression (TRD). Locations for stimulation, success rates and effects of the stimulation on brain metabolism are noted when available. The first observation of the effects of DBS on OCD and TRD came in the course of using DBS to treat movement disorders. Reports of changes in OCD and depression during such studies are reviewed with particular attention to electrode locations and associated adverse events; although these reports were adventitious observations rather than planned. Subsequent studies have been guided by more precise theories of structures involved in DBS and OICD. This study suggests stimulation sites and prognostic indicators for DBS. We also briefly review tractography, a relatively new procedure that holds great promise for the further development of DBS.</p> <p>Methods</p> <p>Articles were retrieved from MEDLINE via PubMed. Relevant references in retrieved articles were followed up. We included all articles reporting on studies of patients selected for having OCD or TRD. Adequacy of the selected studies was evaluated by the Jadad scale. Evaluation criteria included: number of patients, use of recognized psychiatric rating scales, and use of brain blood flow measurements. Success rates classified as "improved" or "recovered" were recorded. Studies of DBS for movement disorders were included if they reported coincidental relief of depression or reduction in OCD. Most of the studies involved small numbers of subjects so individual studies were reviewed.</p> <p>Results</p> <p>While the number of cases was small, these were extremely treatment-resistant patients. While not everyone responded, about half the patients did show dramatic improvement. Associated adverse events were generally trivial in younger psychiatric patients but often severe in older movement disorder patients. The procedures differed from study to study, and the numbers of patients was usually too small to do meaningful statistics or make valid inferences as to who will respond to treatment.</p> <p>Conclusions</p> <p>DBS is considered a promising technique for OCD and TRD. Outstanding questions about patient selection and electrode placement can probably be resolved by (a) larger studies, (b) genetic studies and (c) imaging studies (MRI, fMRI, PET, and tractography).</p
    corecore