5,067 research outputs found
The flatness problem and
By way of a complete integration of the Friedmann equations, in terms of
observables, it is shown that for the cosmological constant there
exist non-flat FLRW models for which the total density parameter
remains throughout the entire history of the universe. Further, it is
shown that in a precise quantitative sense these models are not finely tuned.
When observations are brought to bear on the theory, and in particular the WMAP
observations, they confirm that we live in just such a universe. The conclusion
holds when the classical notion of is extended to dark energy.Comment: Final form to appear in Physical Review Letters. Further information
at http://grtensor.org/Robertson
Boundary Effects in Local Inflation and Spectrum of Density Perturbations
We observe that when a local patch in a radiation filled Robertson-Walker
universe inflates by some reason, outside perturbations can enter into the
inflating region. Generally, the physical wavelengths of these perturbations
become larger than the Hubble radius as they cross into the inflating space and
their amplitudes freeze out immediately. It turns out that the corresponding
power spectrum is not scale invariant. Although these perturbations cannot
reach out to a distance inner observer shielded by a de Sitter horizon, they
still indicate a curious boundary effect in local inflationary scenarios.Comment: 11 pages, 8 figures, revtex4, v4: minor typos corrected, twocolumn
versio
Microscopic theory of quantum-transport phenomena in mesoscopic systems: A Monte Carlo approach
A theoretical investigation of quantum-transport phenomena in mesoscopic
systems is presented. In particular, a generalization to ``open systems'' of
the well-known semiconductor Bloch equations is proposed. The presence of
spatial boundary conditions manifest itself through self-energy corrections and
additional source terms in the kinetic equations, whose form is suitable for a
solution via a generalized Monte Carlo simulation. The proposed approach is
applied to the study of quantum-transport phenomena in double-barrier
structures as well as in superlattices, showing a strong interplay between
phase coherence and relaxation.Comment: to appear in Phys. Rev. Let
Electric Switching of the Charge-Density-Wave and Normal Metallic Phases in Tantalum Disulfide Thin-Film Devices
We report on switching among three charge-density-wave phases - commensurate,
nearly commensurate, incommensurate - and the high-temperature normal metallic
phase in thin-film 1T-TaS2 devices induced by application of an in-plane
electric field. The electric switching among all phases has been achieved over
a wide temperature range, from 77 K to 400 K. The low-frequency electronic
noise spectroscopy has been used as an effective tool for monitoring the
transitions, particularly the switching from the incommensurate
charge-density-wave phase to the normal metal phase. The noise spectral density
exhibits sharp increases at the phase transition points, which correspond to
the step-like changes in resistivity. Assignment of the phases is consistent
with low-field resistivity measurements over the temperature range from 77 K to
600 K. Analysis of the experimental data and calculations of heat dissipation
suggest that Joule heating plays a dominant role in the electric-field induced
transitions in the tested 1T-TaS2 devices on Si/SiO2 substrates. The
possibility of electrical switching among four different phases of 1T-TaS2 is a
promising step toward nanoscale device applications. The results also
demonstrate the potential of noise spectroscopy for investigating and
identifying phase transitions in materials.Comment: 32 pages, 7 figure
Quantum-mechanical wavepacket transport in quantum cascade laser structures
We present a viewpoint of the transport process in quantum cascade laser
structures in which spatial transport of charge through the structure is a
property of coherent quantum-mechanical wavefunctions. In contrast, scattering
processes redistribute particles in energy and momentum but do not directly
cause spatial motion of charge.Comment: 6 pages, 5 figures included in tex, to appear in Physical Review
SO(n + 1) Symmetric Solutions of the Einstein Equations in Higher Dimensions
A method of solving the Einstein equations with a scalar field is presented.
It is applied to find higher dimensional vacuum metrics invariant under the
group SO(n + 1) acting on n-dimensional spheres.Comment: 11 page
- …