113 research outputs found
Scales that matter: guiding effective monitoring of soil properties in restored riparian zones
Considerable effort has been directed at restoring riparian zones to ensure they continue to provide ecosystem services and one of the most common aims of these activities is to reduce nutrients (in either water or soil) entering waterways. Vegetation plays a major role in nutrient interception, but nutrients in terrestrial ecosystems are strongly influenced by edaphic factors. Therefore understanding the effectiveness of riparian restoration efforts is dependent on knowledge of the complex and highly dynamic nature of nutrient cycling processes in riparian soils and their adjacent landscapes. Our primary aim was to assess the potential utility of a range of common soil indicators for monitoring responses to riparian restoration, and to use this information to provide guidance for more effective monitoring. A range of soil physiochemical properties in riparian zones and adjacent paddocks as a comparison were measured, incorporating both structural (e.g., bulk density) and functional (e.g., nitrogen) variables likely to differ in terms of both their responsiveness to restoration, and degree of natural spatial and temporal variation. Soil properties across the three spatial scales considered here (among creeks, among sites and within sites) varied considerably, particularly levels of phosphorus, ammonium and nitrate. Total organic carbon and total nitrogen were less variable and more uniform across all scales. Potential explanations for these patterns were explored by examining relationships between soil properties and vegetation measures, and between a subset of the most promising indicators (carbon, total nitrogen and bulk density, based on inherently low spatial variability) and adjacent land-use. Fertiliser inputs appear to be a strong determinant of soil phosphorus but otherwise soil properties were not strongly related to vegetation or adjacent land-use. For mineral N this is likely a reflection of the highly spatiotemporally dynamic nature of nutrient cycling in riparian zone soils. A better understanding of natural variability in soil properties will greatly aid in developing more effective monitoring programmes to assess potential changes in riparian soil properties. Management of riparian systems to recover soil ecosystem services will depend upon identifying effective ecological indicators that can be used as measures of progress towards restoration goals. This study represents a necessary first step towards guiding meaningful monitoring of soil properties at riparian zones subject to restoration efforts.Robin Hale, Paul Reicha, Tom Daniel, Philip S. Lake, Timothy R. Cavagnar
Domain Wall Spacetimes: Instability of Cosmological Event and Cauchy Horizons
The stability of cosmological event and Cauchy horizons of spacetimes
associated with plane symmetric domain walls are studied. It is found that both
horizons are not stable against perturbations of null fluids and massless
scalar fields; they are turned into curvature singularities. These
singularities are light-like and strong in the sense that both the tidal forces
and distortions acting on test particles become unbounded when theses
singularities are approached.Comment: Latex, 3 figures not included in the text but available upon reques
The influence of quintessence on the motion of a binary system in cosmology
We employ the metric of Schwarzschild space surrounded by quintessential
matter to study the trajectories of test masses on the motion of a binary
system. The results, which are obtained through the gradually approximate
approach, can be used to search for dark energy via the difference of the
azimuth angle of the pericenter. The classification of the motion is discussed.Comment: 7 pages, 1 figur
Higher dimensional dust collapse with a cosmological constant
The general solution of the Einstein equation for higher dimensional (HD)
spherically symmetric collapse of inhomogeneous dust in presence of a
cosmological term, i.e., exact interior solutions of the Einstein field
equations is presented for the HD Tolman-Bondi metrics imbedded in a de Sitter
background. The solution is then matched to exterior HD Scwarschild-de Sitter.
A brief discussion on the causal structure singularities and horizons is
provided. It turns out that the collapse proceed in the same way as in the
Minkowski background, i.e., the strong curvature naked singularities form and
that the higher dimensions seem to favor black holes rather than naked
singularities.Comment: 7 Pages, no figure
Electrostatic potential profiles of molecular conductors
The electrostatic potential across a short ballistic molecular conductor
depends sensitively on the geometry of its environment, and can affect its
conduction significantly by influencing its energy levels and wave functions.
We illustrate some of the issues involved by evaluating the potential profiles
for a conducting gold wire and an aromatic phenyl dithiol molecule in various
geometries. The potential profile is obtained by solving Poisson's equation
with boundary conditions set by the contact electrochemical potentials and
coupling the result self-consistently with a nonequilibrium Green's function
(NEGF) formulation of transport. The overall shape of the potential profile
(ramp vs. flat) depends on the feasibility of transverse screening of electric
fields. Accordingly, the screening is better for a thick wire, a multiwalled
nanotube or a close-packed self-assembled monolayer (SAM), in comparison to a
thin wire, a single-walled nanotube or an isolated molecular conductor. The
electrostatic potential further governs the alignment or misalignment of
intramolecular levels, which can strongly influence the molecular I-V
characteristic. An external gate voltage can modify the overall potential
profile, changing the current-voltage (I-V) characteristic from a resonant
conducting to a saturating one. The degree of saturation and gate modulation
depends on the metal-induced-gap states (MIGS) and on the electrostatic gate
control parameter set by the ratio of the gate oxide thickness to the channel
length.Comment: to be published in Phys. Rev. B 69, No.3, 0353XX (2004
Semiclassical Instability of the Cauchy Horizon in Self-Similar Collapse
Generic spherically symmetric self-similar collapse results in strong
naked-singularity formation. In this paper we are concerned with particle
creation during a naked-singularity formation in spherically symmetric
self-similar collapse without specifying the collapsing matter. In the generic
case, the power of particle emission is found to be proportional to the inverse
square of the remaining time to the Cauchy horizon (CH). The constant of
proportion can be arbitrarily large in the limit to marginally naked
singularity. Therefore, the unbounded power is especially striking in the case
that an event horizon is very close to the CH because the emitted energy can be
arbitrarily large in spite of a cutoff expected from quantum gravity. Above
results suggest the instability of the CH in spherically symmetric self-similar
spacetime from quantum field theory and seem to support the existence of a
semiclassical cosmic censor. The divergence of redshifts and blueshifts of
emitted particles is found to cause the divergence of power to positive or
negative infinity, depending on the coupling manner of scalar fields to
gravity. On the other hand, it is found that there is a special class of
self-similar spacetimes in which the semiclassical instability of the CH is not
efficient. The analyses in this paper are based on the geometric optics
approximation, which is justified in two dimensions but needs justification in
four dimensions.Comment: 14 pages, 4 figures, minor errors corrected and some sentences added
in the introduction, accepted for publication in Physical Review
Higher dimensional radiation collapse and cosmic censorship
We study the occurrence of naked singularities in the spherically symmetric
collapse of radiation shells in a higher dimensional spacetime. The necessary
conditions for the formation of a naked singularity or a black hole are
obtained. The naked singularities are found to be strong in the Tipler's sense
and thus violating cosmic censorship conjecture.Comment: 4 pages, ReVTeX, Phys Rev D Vol 62 107502 (2000
Classical and quantum properties of a 2-sphere singularity
Recently Boehmer and Lobo have shown that a metric due to Florides, which has
been used as an interior Schwarzschild solution, can be extended to reveal a
classical singularity that has the form of a two-sphere. Here the singularity
is shown to be a scalar curvature singularity that is both timelike and
gravitationally weak. It is also shown to be a quantum singularity because the
Klein-Gordon operator associated with quantum mechanical particles approaching
the singularity is not essentially self-adjoint.Comment: 10 pages, 1 figure, minor corrections, final versio
Canonical theory of spherically symmetric spacetimes with cross-streaming null dusts
The Hamiltonian dynamics of two-component spherically symmetric null dust is
studied with regard to the quantum theory of gravitational collapse. The
components--the ingoing and outgoing dusts--are assumed to interact only
through gravitation. Different kinds of singularities, naked or "clothed", that
can form during collapse processes are described. The general canonical
formulation of the one-component null-dust dynamics by Bicak and Kuchar is
restricted to the spherically symmetric case and used to construct an action
for the two components. The transformation from a metric variable to the
quasilocal mass is shown to simplify the mathematics. The action is reduced by
a choice of gauge and the corresponding true Hamiltonian is written down.
Asymptotic coordinates and energy densities of dust shells are shown to form a
complete set of Dirac observables. The action of the asymptotic time
translation on the observables is defined but it has been calculated explicitly
only in the case of one-component dust (Vaidya metric).Comment: 15 pages, 3 figures, submitted to Phys. Rev.
Gravitational collapse of a Hagedorn fluid in Vaidya geometry
The gravitational collapse of a high-density null charged matter fluid,
satisfying the Hagedorn equation of state, is considered in the framework of
the Vaidya geometry. The general solution of the gravitational field equations
can be obtained in an exact parametric form. The conditions for the formation
of a naked singularity, as a result of the collapse of the compact object, are
also investigated. For an appropriate choice of the arbitrary integration
functions the null radial outgoing geodesic, originating from the shell
focussing central singularity, admits one or more positive roots. Hence a
collapsing Hagedorn fluid could end either as a black hole, or as a naked
singularity. A possible astrophysical application of the model, to describe the
energy source of gamma-ray bursts, is also considered.Comment: 14 pages, 2 figures, to appear in Phys. Rev.
- …