14 research outputs found
Data Augmentation for Machine Translation via Dependency Subtree Swapping
We present a generic framework for data augmentation via dependency subtree
swapping that is applicable to machine translation. We extract corresponding
subtrees from the dependency parse trees of the source and target sentences and
swap these across bisentences to create augmented samples. We perform thorough
filtering based on graphbased similarities of the dependency trees and
additional heuristics to ensure that extracted subtrees correspond to the same
meaning. We conduct resource-constrained experiments on 4 language pairs in
both directions using the IWSLT text translation datasets and the Hunglish2
corpus. The results demonstrate consistent improvements in BLEU score over our
baseline models in 3 out of 4 language pairs. Our code is available on GitHub
Data augmentation for machine translation via dependency subtree swapping
We present a generic framework for data augmentation via dependency subtree swapping that is applicable to machine translation. We extract corresponding subtrees from the dependency parse trees of the source and target sentences and swap these across bisentences to create augmented samples. We perform thorough filtering based on graphbased similarities of the dependency trees and additional heuristics to ensure that extracted subtrees correspond to the same meaning. We conduct resource-constrained experiments on 4 language pairs in both directions using the IWSLT text translation datasets and the Hunglish2 corpus. The results demonstrate consistent improvements in BLEU score over our baseline models in 3 out of 4 language pairs. Our code is available on GitHub
HunSum-1 : an abstractive summarization dataset for Hungarian
We introduce HunSum-1 : a dataset for Hungarian abstractive summarization, consisting of 1.14M news articles. The dataset is built by collecting, cleaning and deduplicating data from 9 major Hungarian news sites through CommonCrawl. Using this dataset, we build abstractive summarizer models based on huBERT and mT5. We demonstrate the value of the created dataset by performing a quantitative and qualitative analysis on the models’ results. The HunSum-1 dataset, all models used in our experiments and our code1 are available open source
SIGMORPHON 2021 Shared Task on Morphological Reinflection: Generalization Across Languages
This year's iteration of the SIGMORPHON Shared Task on morphological reinflection focuses on typological diversity and cross-lingual variation of morphosyntactic features. In terms of the task, we enrich UniMorph with new data for 32 languages from 13 language families, with most of them being under-resourced: Kunwinjku, Classical Syriac, Arabic (Modern Standard, Egyptian, Gulf), Hebrew, Amharic, Aymara, Magahi, Braj, Kurdish (Central, Northern, Southern), Polish, Karelian, Livvi, Ludic, Veps, Võro, Evenki, Xibe, Tuvan, Sakha, Turkish, Indonesian, Kodi, Seneca, Asháninka, Yanesha, Chukchi, Itelmen, Eibela. We evaluate six systems on the new data and conduct an extensive error analysis of the systems' predictions. Transformer-based models generally demonstrate superior performance on the majority of languages, achieving >90% accuracy on 65% of them. The languages on which systems yielded low accuracy are mainly under-resourced, with a limited amount of data. Most errors made by the systems are due to allomorphy, honorificity, and form variation. In addition, we observe that systems especially struggle to inflect multiword lemmas. The systems also produce misspelled forms or end up in repetitive loops (e.g., RNN-based models). Finally, we report a large drop in systems' performance on previously unseen lemmas.Peer reviewe
TreeSwap: Data Augmentation for Machine Translation via Dependency Subtree Swapping
Data augmentation methods for neural machine translation are particularly useful when limited amount of training data is available, which is often the case when dealing with low-resource languages. We introduce a novel augmentation method, which generates new sentences by swapping objects and subjects across bisentences. This is performed simultaneously based on the dependency parse trees of the source and target sentences. We name this method TreeSwap. Our results show that TreeSwap achieves consistent improvements over baseline models in 4 language pairs in both directions on resource-constrained datasets. We also explore domain-specific corpora, but find that our method does not make significant improvements on law, medical and IT data. We report the scores of similar augmentation methods and find that TreeSwap performs comparably. We also analyze the generated sentences qualitatively and find that the augmentation produces a correct translation in most cases. Our code is available on Github1. © 2023 Incoma Ltd. All rights reserved