1 research outputs found
Preparation of PLLA/PMMA and PLLA/PS binary blend nanoparticles by incorporation of PLLA in methyl methacrylate or styrene miniemulsion homopolymerization
Miniemulsion homopolymerization reactions of methyl methacrylate (MMA) and styrene (STY) using poly(L-lactide) as co-stabilizer were carried out in order to prepare poly(L-lactide)/poly(methyl methacrylate) (PLLA/PMMA) and poly(L-lactide)/polystyrene (PLLA/PS) binary blend nanoparticles. The effect of PLLA concentration on methyl methacrylate (MMA) and styrene (STY) homopolymerization reactions was evaluated. It was found that the incorporation of PLLA resulted on acceleration of MMA and STY homopolymerization reactions and led to a molar mass increase of up to 70% for PS in PLLA/PS blend nanoparticles in relation to those prepared without PLLA, which can be attributed to an increase of reaction loci viscosity (gel effect). PLLA also acted as an efficient co-stabilizer, since it was able to retard diffusional degradation of droplets when no other kind of co-stabilizer was used. Two isolated Tgs were found in both PLLA/PMMA and PLLA/PS blend nanoparticles which can be associated to blend immiscibility. TEM images corroborate these results, suggesting that immiscible PLLA/PMMA and PLLA/PS blend nanoparticles could be formed with two segregated phases and core-shell morphology