5 research outputs found

    Quasi-Free-Standing Graphene Monolayer on a Ni Crystal through Spontaneous Na Intercalation

    Get PDF
    Graphene on metal substrates often shows different electronic properties from isolated graphene because of graphene-substrate interactions. One needs to remove the metals with acids and then to transfer graphene to weakly interacting substrates to recover electrical properties inherent in graphene. This process is not easy and besides causes undesirable tears, defects, and impurities in graphene. Here, we report a method to recover the electronic structure of graphene from a strongly interacting Ni substrate by spontaneous Na intercalation. In order to characterize the intercalation process, the density-functional-theory calculations and angle-resolved photoemission-spectroscopy (ARPES) and scanning-tunneling-microscopy (STM) measurements are carried out. From the density-functional-theory calculations, Na atoms energetically prefer interface intercalation to surface adsorption for the graphene/Ni(111) surface. Unlike most intercalants, Na atoms intercalate spontaneously at room temperature due to a tiny diffusion barrier, which is consistent with our temperature-dependent ARPES and core-level photoemission spectroscopy, and with our submonolayer ARPES and STM results at room temperature. As a result of the spontaneous intercalation, the electronic structure of graphene is almost recovered, as confirmed by the Dirac cone with a negligible band gap in ARPES and the sixfold symmetry in STM.open

    Large scale synthesis of ultralong aligned buckled multiwalled carbon nanotubes by one-step pyrolysis

    No full text
    We report on the large scale synthesis of millimetre long buckled multiwalled carbon nanotubes by one-step pyrolysis. Current carrying capability of a highly buckled region is shown to be more as compared to a less buckled region

    Observation of Mg-induced structural and electronic properties of graphene

    No full text
    We report the formation of superstructures induced by Mg adatoms on a single layer graphene (SLG) formed on Ni(111) substrate, where a strong metallic parabolic band is found near the Fermi level at the ??-point of the Brillouin zone. Our valence band and core level data obtained by using synchrotron photons indicate that Mg adatoms intercalate initially to lift the SLG from the Ni substrate to produce a well-defined ??-band of SLG, and then the parabolic band appears upon adding extra Mg atoms on the Mg-intercalated SLG. Our scanning tunneling microscopy images from these systems show the presence of superstructures, a 2???3 ?? 2???3 phase for the intercalated Mg layer below the SLG and then a ???7 ?? ???7 phase for the Mg overlayer formed on the Mg-intercalated SLG. We discuss the physical implications of these superstructures and the associated parabolic band in terms of a possible graphene-based two-dimensional superconductivity.clos

    Unveiling the origin of n-type doping of natural MoS2: carbon

    No full text
    Abstract MoS2 has attracted intense interest in many applications. Natural MoS2 and field-effect transistors made of it generally exhibit n-type characteristics, but its origin is unknown. Herein, we show that C is the origin of the universal n-type doping of natural MoS2. Photoemission spectroscopies reveal that while many MoS2 samples with C detected are n-type, some without C exhibit p-type characteristics. The C-free, p-type MoS2 changes to n-type over time with the concurrent appearance of C that is out-diffused from bulk, indicating that C induces the n-type doping. The C-origin is verified by C-deposition and supported by theoretical calculations. This carbon appears as nanometer-scale defects frequently observed in scanning tunneling microscopy. In addition, we propose, based on the calculations, that S vacancies are responsible for the p-type characteristics, which contrasts with the widespread belief. This work provides new perspectives on MoS2 doping and presents a new direction for fabricating reliable MoS2 devices

    Two-Dimensional Excitonic Photoluminescence in Graphene on a Cu Surface

    No full text
    Despite having outstanding electrical properties, graphene is unsuitable for optical devices because of its zero band gap. Here, we report two-dimensional excitonic photoluminescence (PL) from graphene grown on a Cu(111) surface, which shows an unexpected and remarkably sharp strong emission near 3.16 eV (full width at half-maximum ???3 meV) and multiple emissions around 3.18 eV. As temperature increases, these emissions blue shift, displaying the characteristic negative thermal coefficient of graphene. The observed PL originates from the significantly suppressed dispersion of excited electrons in graphene caused by hybridization of graphene ?? and Cu d orbitals of the first and second Cu layers at a shifted saddle point 0.525(M+K) of the Brillouin zone. This finding provides a pathway to engineering optoelectronic graphene devices, while maintaining the outstanding electrical properties of graphene.clos
    corecore