202 research outputs found

    Information content of in situ and remotely sensed chlorophyll-a: Learning from size-structured phytoplankton model

    Full text link
    © 2018 Chlorophyll-a measurements in the form of in situ observations and satellite ocean colour products are commonly used in data assimilation to calibrate marine biogeochemical models. Here, a two size-class phytoplankton biogeochemical model, with a 0D configuration, was used to simulate the surface chlorophyll-a dynamics (simulated surface Chl-a) for cyclonic and anticyclonic eddies off East Australia. An optical model was then used to calculate the inherent optical properties from the simulation and convert them into remote-sensing reflectance (Rrs). Subsequently, Rrs was used to produce a satellite-like estimate of the simulated surface Chl-a concentrations through the MODIS OC3M algorithm (simulated OC3M Chl-a). Identical parameter optimisation experiments were performed through the assimilation of the two separate datasets (simulated surface Chl-a and simulated OC3M Chl-a), with the purpose of investigating the contrasting information content of simulated surface Chl-a and remotely-sensed data sources. The results we present are based on the analysis of the distribution of a cost function, varying four parameters of the biogeochemical model. In our idealized experiments the simulated OC3M Chl-a product is a poor proxy for the total simulated surface Chl-a concentration. Furthermore, our result show the OC3M algorithm can underestimate the simulated chlorophyll-a concentration in offshore eddies off East Australia (Case I waters), because of the weak relationship between large-sized phytoplankton and remote-sensing reflectance. Although Case I waters are usually characteristic of oligotrophic environments, with a photosynthetic community typically represented by relatively small-sized phytoplankton, mesoscale features such as eddies can generate seasonally favourable conditions for a photosynthetic community with a greater proportion of large phytoplankton cells. Furthermore, our results show that in mesoscale features such as eddies, in situ chlorophyll-a observations and the ocean colour products can carry different information related to phytoplankton sizes. Assimilating both remote-sensing reflectance and measurements of in situ chlorophyll-a concentration reduces the uncertainty of the parameter values more than either data set alone, thus reducing the spread of acceptable solutions, giving an improved simulation of the natural environment

    Global radiant flux from active volcanoes: the 2000–2019 MIROVA database

    Get PDF
    Since 2000, the Moderate Resolution Imaging Spectroradiometer (MODIS) has acquired infrared images of the Earth’s surface daily. These data have made it possible to measure the thermal energy radiated by the world’s most famous volcanoes and also to discover and track eruptions in remote and poorly monitored regions. In this work, we present the database of Volcanic Radiative Power (VRP, in W) time series, recorded by the MIROVA (Middle Infrared Observation of Volcanic Activity) system over 2 decades of MODIS observations (2000–2019) at 111 active volcanoes. The database reveals that globally, the number of thermally active volcanoes each year varies between 60 and 80, almost equally partitioned between volcanoes with a basic (50%) and intermediate (45%) composition, while only 5% is represented by volcanoes erupting acidic lavas. Within the investigated period, the global-scale heat flux was almost stationary, and occasionally punctuated by peaks associated with the largest effusive eruptions (e.g., Bardarbunga and Kilauea). The Volcanic Radiative Energy (VRE, in J) emitted by basic volcanoes (~1.8 × 1018 J) in 20 years constitutes 91% of the total, while intermediates and acids contribute only 8% (~1.8 × 1017 J) and 1% (~1.7 × 1016 J), respectively. A comparison with the volume of lava erupted effusively by the same volcanoes reveals that this difference is attributed to the lower efficiency in radiating thermal energy of increasingly acidic (viscous) lava bodies. Each compositional group is associated with a specific relationship between VRE and erupted volume which characterises most of the effusive volcanoes. On the other hand, some open-vent volcanoes reveal that much more heat is released than that theoretically radiated by the erupted lava. This imbalance (hereby called excess radiation) is attributed to an additional heat source, likely associated with an underlying convective magma column and/or to outgassing through a permeable conduit. We are convinced that the database presented in this work will be useful to support new emerging studies on globalscale volcanism and will contribute to a better understanding of each volcanic system
    • …
    corecore