7 research outputs found

    Multilocus sequence typing of a global collection of pasteurella multocida isolates from cattle and other host species demonstrates niche association

    Get PDF
    Background- Pasteurella multocida causes disease in many host species throughout the world. In bovids, it contributes to bovine respiratory disease (BRD) and causes haemorrhagic septicaemia (HS). Previous studies have suggested that BRD-associated P. multocida isolates are of limited diversity. A multilocus sequence typing (MLST) scheme for P. multocida was used to determine whether the low levels of diversity reported are due to the limited discriminatory power of the typing method used, restricted sample selection or true niche association. Bovine respiratory isolates of P. multocida (n = 133) from the UK, the USA and France, collected between 1984 and 2008 from both healthy and clinically affected animals, were typed using MLST. Isolates of P. multocida from cases of HS, isolates from other host species and data from the MLST database were used as comparison. Results - Bovine respiratory isolates were found to be clonal (ISA 0.45) with 105/128 belonging to clonal complex 13 (CC13). HS isolates were not related to bovine respiratory isolates. Of the host species studied, the majority had their own unique sequence types (STs), with few STs being shared across host species, although there was some cross over between porcine and bovine respiratory isolates. Avian, ovine and porcine isolates showed greater levels of diversity compared to cattle respiratory isolates, despite more limited geographic origins. Conclusions - The homogeneity of STs of bovine respiratory P. multocida observed, and the differences between these and P. multocida subpopulations from bovine non-respiratory isolates and non-bovine hosts may indicate niche association

    <i>Teladorsagia circumcincta</i>: The transcriptomic response of a multi-drug-resistant isolate to ivermectin exposure <i>in vitro</i>

    No full text
    The emergence and spread of anthelmintic resistance in parasitic nematodes is a serious threat to the sustainability of the livestock industry. Resistance has a genetic component but the underlying mechanisms and the means by which resistant parasites survive anthelmintic treatment are still poorly understood. Differential gene expression may be implicated, especially in multi-drug resistant parasites. In this study, we investigated the transcriptomic response of a triple drug-resistant isolate of Teladorsagia circumcincta to ivermectin exposure in vitro, using Roche 454 sequencing. The study generated similar to 100,000 new EST sequences, similar to 50,000 each from the ivermectin-exposed and -unexposed pools of parasites. Bioinformatic analysis of the expression profiles revealed statistically significant differences in the mean expression levels of four KEGG orthologous groups, namely 'translation', 'amino acid metabolism', 'carbohydrate metabolism' and 'xenobiotic degradation and metabolism'. Notably, candidate resistance genes such as p-glycoproteins and cytochrome P450s were poorly represented in both datasets. Clusters of sequences, containing both exposed and unexposed ESTs, also revealed statistically significant differences. Four clusters were identified as cytochrome c oxidase subunits, two of these clusters had a statistically significant increase in the number of exposed ESTs compared to unexposed ESTs. Four clusters were identified as vitellogenin; three of these clusters had a statistically significant decrease in number of exposed ESTs compared to unexposed ESTs

    Genomic comparison of virulent and non-virulent Streptococcus agalactiaein fish

    No full text
    &lt;i&gt;Streptococcus agalactiae&lt;/i&gt; infections in fish are predominantly caused by beta-haemolytic strains of clonal complex (CC) 7, notably its namesake sequence type (ST) 7, or by non-haemolytic strains of CC552, including the globally distributed ST260. In contrast, CC23, including its namesake ST23, has been associated with a wide homeothermic and poikilothermic host range, but never with fish. The aim of this study was to determine whether ST23 is virulent in fish and to identify genomic markers of fish adaptation of &lt;i&gt;S. agalactiae&lt;/i&gt;. Intraperitoneal challenge of Nile tilapia, &lt;i&gt;Oreochromis niloticus&lt;/i&gt; (Linnaeus), showed that ST260 is lethal at doses down to 10&lt;sup&gt;2&lt;/sup&gt; cfu per fish, whereas ST23 does not cause disease at 10&lt;sup&gt;7&lt;/sup&gt; cfu per fish. Comparison of the genome sequence of ST260 and ST23 with those of strains derived from fish, cattle and humans revealed the presence of genomic elements that are unique to subpopulations of &lt;i&gt;S. agalactiae&lt;/i&gt; that have the ability to infect fish (CC7 and CC552). These loci occurred in clusters exhibiting typical signatures of mobile genetic elements. PCR-based screening of a collection of isolates from multiple host species confirmed the association of selected genes with fish-derived strains. Several fish-associated genes encode proteins that potentially provide fitness in the aquatic environment

    Complete genome sequences of corynebacterium pseudotuberculosis strains 3/99-5 and 42/02-A, isolated from sheep in Scotland and Australia, respectively

    No full text
    Here, we report the whole-genome sequences of two ovine-pathogenic Corynebacterium pseudotuberculosis isolates: strain 3/99-5, which represents the first C. pseudotuberculosis genome originating from the United Kingdom, and 42/02-A, the second from Australia. These genome sequences will contribute to the objective of determining the global pan-genome of this bacterium
    corecore