37 research outputs found
The possible link between the elevated serum levels of neurokinin A and anti-ribosomal P protein antibodies in children with autism
<p>Abstract</p> <p>Background</p> <p>Neurogenic inflammation is orchestrated by a large number of neuropeptides. Tachykinins (substance P, neurokinin A and neurokinin B) are pro-inflammatory neuropeptides that may play an important role in some autoimmune neuroinflammatory diseases. Autoimmunity may have a role in the pathogenesis of autism in some patients. We are the first to measure serum neurokinin A levels in autistic children. The relationship between serum levels of neurokinin A and anti-ribosomal P protein antibodies was also studied.</p> <p>Methods</p> <p>Serum neurokinin A and anti-ribosomal P protein antibodies were measured in 70 autistic children in comparison to 48 healthy-matched children.</p> <p>Results</p> <p>Autistic children had significantly higher serum neurokinin A levels than healthy controls (P < 0.001). Children with severe autism had significantly higher serum neurokinin A levels than patients with mild to moderate autism (P < 0.001). Increased serum levels of neurokinin A and anti-ribosomal P protein antibodies were found in 57.1% and 44.3%, respectively of autistic children. There was significant positive correlations between serum levels of neurokinin A and anti-ribosomal P protein antibodies (P = 0.004).</p> <p>Conclusions</p> <p>Serum neurokinin A levels were elevated in some autistic children and they were significantly correlated to the severity of autism and to serum levels of anti-ribosomal P protein antibodies. However, this is an initial report that warrants further research to determine the pathogenic role of neurokinin A and its possible link to autoimmunity in autism. The therapeutic role of tachykinin receptor antagonists, a potential new class of anti-inflammatory medications, should also be studied in autism.</p
Camel Milk as a Potential Therapy as an Antioxidant in Autism Spectrum Disorder (ASD)
Extensive studies have demonstrated that oxidative stress plays a vital role in the pathology of several neurological diseases, including autism spectrum disorder (ASD); those studies proposed that GSH and antioxidant enzymes have a pathophysiological role in autism. Furthermore, camel milk has emerged to have potential therapeutic effects in autism. The aim of the current study was to evaluate the effect of camel milk consumption on oxidative stress biomarkers in autistic children, by measuring the plasma levels of glutathione, superoxide dismutase, and myeloperoxidase before and 2 weeks after camel milk consumption, using the ELISA technique. All measured parameters exhibited significant increase after camel milk consumption (). These findings suggest that camel milk could play an important role in decreasing oxidative stress by alteration of antioxidant enzymes and nonenzymatic antioxidant molecules levels, as well as the improvement of autistic behaviour as demonstrated by the improved Childhood Autism Rating Scale (CARS)
Proinflammatory and proapoptotic markers in relation to mono and di-cations in plasma of autistic patients from Saudi Arabia
<p>Abstract</p> <p>Objectives</p> <p>Autism is a developmental disorder characterized by social and emotional deficits, language impairments and stereotyped behaviors that manifest in early postnatal life. This study aims to clarify the relationship amongst absolute and relative concentrations of K<sup>+</sup>, Na<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+ </sup>and/or proinflammatory and proapoptotic biomarkers.</p> <p>Materials and methods</p> <p>Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>/K<sup>+</sup>, Ca<sup>2+</sup>/Mg<sup>2+ </sup>together with IL6, TNFα as proinflammatory cytokines and caspase3 as proapoptotic biomarker were determined in plasma of 25 Saudi autistic male patients and compared to 16 age and gender matching control samples.</p> <p>Results</p> <p>The obtained data recorded that Saudi autistic patients have a remarkable lower plasma caspase3, IL6, TNFα, Ca<sup>2+ </sup>and a significantly higher K<sup>+ </sup>compared to age and gender matching controls. On the other hand both Mg<sup>2+ </sup>and Na<sup>+ </sup>were non-significantly altered in autistic patients. Pearson correlations revealed that plasma concentrations of the measured cytokines and caspase-3 were positively correlated with Ca<sup>2+ </sup>and Ca<sup>2+</sup>/K<sup>+ </sup>ratio. Reciever Operating Characteristics (ROC) analysis proved that the measured parameters recorded satisfactory levels of specificity and sensitivity.</p> <p>Conclusion</p> <p>Alteration of the selected measured ions confirms that oxidative stress and defective mitochondrial energy production could be contributed in the pathogenesis of autism. Moreover, it highlights the relationship between the measured ions, IL6, TNFα and caspase3 as a set of signalling pathways that might have a role in generating this increasingly prevalent disorder. The role of ions in the possible proinflammation and proapoptic mechanisms of autistics' brains were hypothesized and explained.</p
Impact of physical exercise on behavioral and social features in individuals with autism spectrum disorder
Background and Study Aim. Physical exercise is linked with several physical and psychological health advantages. A range of investigations has revealed the presence of a significant association between physical exercise and indicative improvements in subjects with Autism Spectrum Disorder (ASD). This systematic review aims to update the literature about the impact of physical exercise interventions on social, behavioral, and other outcomes for individuals with ASD.
Materials and Methods. The study design followed the PRISMA guidelines. A systematic search of electronic databases—PubMed, Google Scholar, Science Direct, and Jane Publications—was performed from 2010 to December 2023. We searched for related research papers in English using keywords 'Autism Spectrum Disorder,' 'exercise,' and 'physical activity.
Results. This systematic review employed a four-stage screening process, which resulted in the inclusion of 18 trial studies. The intervention period varied from three to forty-eight weeks, with a frequency of 3-7 times per week. The results demonstrated that physical exercise had a substantial positive impact on communication, social interaction, and motor skills in subjects with Autism Spectrum Disorder (ASD).
Conclusions. This review supports physical exercise as a powerful tool in decreasing stereotypical behaviors, and in improving social communication and motor skills in subjects diagnosed with ASD. Regular physical exercise therapy can have a greater effect on improving the quality of life for ASD subjects
Relationship Between Sonic Hedgehog Protein, Brain-Derived Neurotrophic Factor and Oxidative Stress in Autism Spectrum Disorders
The etiology of autism spectrum disorders (ASD) is not well known but oxidative stress has been suggested to play a pathological role. We report here that the serum levels of Sonic hedgehog (SHH) protein and brain-derived neurotrophic factor (BDNF) might be linked to oxidative stress in ASD. By using the whole blood or polymorphonuclear leukocytes, we demonstrated that autistic children produced a significantly higher level of oxygen free radicals (OFR). In addition, we found significantly higher levels of serum SHH protein in children with mild as well as severe form of autism. We also found that the serum level of BDNF was significantly reduced in autistic children with mild form of the disorder but not with severe form of the disorder. Our findings are the first to report a correlation between SHH, BDNF and OFR in autistic children, suggesting a pathological role of oxidative stress and SHH in autism spectrum disorders
Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia
<p>Abstract</p> <p>Background</p> <p>Xenobiotics are neurotoxins that dramatically alter the health of the child. In addition, an inefficient detoxification system leads to oxidative stress, gut dysbiosis, and immune dysfunction. The consensus among physicians who treat autism with a biomedical approach is that those on the spectrum are burdened with oxidative stress and immune problems. In a trial to understand the role of detoxification in the etiology of autism, selected parameters related to sulfur-dependent detoxification mechanisms in plasma of autistic children from Saudi Arabia will be investigated compared to control subjects.</p> <p>Methods</p> <p>20 males autistic children aged 3-15 years and 20 age and gender matching healthy children as control group were included in this study. Levels of reduced glutathione (GSH), total (GSH+GSSG), glutathione status (GSH/GSSG), glutathione reductase (GR), glutathione- s-transferase (GST), thioredoxin (Trx), thioredoxin reductase (TrxR) and peroxidoxins (Prxs I and III) were determined.</p> <p>Results</p> <p>Reduced glutathione, total glutathione, GSH/GSSG and activity levels of GST were significantly lower, GR shows non-significant differences, while, Trx, TrxR and both Prx I and III recorded a remarkably higher values in autistics compared to control subjects.</p> <p>Conclusion</p> <p>The impaired glutathione status together with the elevated Trx and TrxR and the remarkable over expression of both Prx I and Prx III, could be used as diagnostic biomarkers of autism.</p