27,120 research outputs found
Post-Newtonian Models of Binary Neutron Stars
Using an energy variational method, we calculate quasi-equilibrium
configurations of binary neutron stars modeled as compressible triaxial
ellipsoids obeying a polytropic equation of state. Our energy functional
includes terms both for the internal hydrodynamics of the stars and for the
external orbital motion. We add the leading post-Newtonian (PN) corrections to
the internal and gravitational energies of the stars, and adopt hybrid orbital
terms which are fully relativistic in the test-mass limit and always accurate
to PN order. The total energy functional is varied to find quasi-equilibrium
sequences for both corotating and irrotational binaries in circular orbits. We
examine how the orbital frequency at the innermost stable circular orbit
depends on the polytropic index n and the compactness parameter GM/Rc^2. We
find that, for a given GM/Rc^2, the innermost stable circular orbit along an
irrotational sequence is about 17% larger than the innermost secularly stable
circular orbit along the corotating sequence when n=0.5, and 20% larger when
n=1. We also examine the dependence of the maximum neutron star mass on the
orbital frequency and find that, if PN tidal effects can be neglected, the
maximum equilibrium mass increases as the orbital separation decreases.Comment: 53 pages, LaTex, 9 figures as 10 postscript files, accepted by Phys.
Rev. D, replaced version contains updated reference
Carbon and Strontium Abundances of Metal-Poor Stars
We present carbon and strontium abundances for 100 metal-poor stars measured
from R7000 spectra obtained with the Echellette Spectrograph and Imager
at the Keck Observatory. Using spectral synthesis of the G-band region, we have
derived carbon abundances for stars ranging from [Fe/H] to
[Fe/H]. The formal errors are dex in [C/Fe]. The strontium
abundance in these stars was measured using spectral synthesis of the resonance
line at 4215 {\AA}. Using these two abundance measurments along with the barium
abundances from our previous study of these stars, we show it is possible to
identify neutron-capture-rich stars with our spectra. We find, as in other
studies, a large scatter in [C/Fe] below [Fe/H]. Of the stars with
[Fe/H], 94% can be classified as carbon-rich metal-poor stars. The Sr
and Ba abundances show that three of the carbon-rich stars are
neutron-capture-rich, while two have normal Ba and Sr. This fraction of carbon
enhanced stars is consistent with other studies that include this metallicity
range.Comment: ApJ, Accepte
Solving the Darwin problem in the first post-Newtonian approximation of general relativity
We analytically calculate the equilibrium sequence of the corotating binary
stars of incompressible fluid in the first post-Newtonian(PN) approximation of
general relativity. By calculating the total energy and total angular momentum
of the system as a function of the orbital separation, we investigate the
innermost stable circular orbit for corotating binary(we call it ISCCO). It is
found that by the first PN effect, the orbital separation of the binary at the
ISCCO becomes small with increase of the compactness of each star, and as a
result, the orbital angular velocity at the ISCCO increases. These behaviors
agree with previous numerical works.Comment: 33 pages, revtex, 4 figures(eps), accepted for publication in Phys.
Rev.
Coulomb Drag near the metal-insulator transition in two-dimensions
We studied the drag resistivity between dilute two-dimensional hole systems,
near the apparent metal-insulator transition. We find the deviations from the
dependence of the drag to be independent of layer spacing and
correlated with the metalliclike behavior in the single layer resistivity,
suggesting they both arise from the same origin. In addition, layer spacing
dependence measurements suggest that while the screening properties of the
system remain relatively independent of temperature, they weaken significantly
as the carrier density is reduced. Finally, we demonstrate that the drag itself
significantly enhances the metallic dependence in the single layer
resistivity.Comment: 6 pages, 5 figures; revisions to text, to appear in Phys. Rev.
Strange-Beauty Meson Production at Colliders
The production rates and transverse momentum distributions of the
strange-beauty mesons and at colliders are calculated
assuming fragmentation is the dominant process. Results are given for the
Tevatron in the large transverse momentum region, where fragmentation is
expected to be most important.Comment: Minor changes in the discussion section. Also available at
http://www.ph.utexas.edu/~cheung/paper.htm
Ground state properties of one-dimensional Bose-Fermi mixtures
Bose-Fermi mixtures in one dimension are studied in detail on the basis of an
exact solution. Corresponding to three possible choices of the referecce state
in the quantum inverse scattering method, three sets of Bethe-ansatz equations
are derived explicitly. The features of the ground state and low-lying
excitations are investigated. The ground state phase diagram caused by the
external field and chemical potential is obtained
Innermost Stable Circular Orbit of Inspiraling Neutron-Star Binaries: Tidal Effects, Post-Newtonian Effects and the Neutron-Star Equation of State
We study how the neutron-star equation of state affects the onset of the
dynamical instability in the equations of motion for inspiraling neutron-star
binaries near coalescence. A combination of relativistic effects and Newtonian
tidal effects cause the stars to begin their final, rapid, and
dynamically-unstable plunge to merger when the stars are still well separated
and the orbital frequency is 500 cycles/sec (i.e. the gravitational
wave frequency is approximately 1000 Hz). The orbital frequency at which the
dynamical instability occurs (i.e. the orbital frequency at the innermost
stable circular orbit) shows modest sensitivity to the neutron-star equation of
state (particularly the mass-radius ratio, , of the stars). This
suggests that information about the equation of state of nuclear matter is
encoded in the gravitational waves emitted just prior to the merger.Comment: RevTeX, to appear in PRD, 8 pages, 4 figures include
Quantum integrable system with two color components in two dimensions
The Davey-Stewartson 1(DS1) system[9] is an integrable model in two
dimensions. A quantum DS1 system with 2 colour-components in two dimensions has
been formulated. This two-dimensional problem has been reduced to two
one-dimensional many-body problems with 2 colour-components. The solutions of
the two-dimensional problem under consideration has been constructed from the
resulting problems in one dimensions. For latters with the -function
interactions and being solved by the Bethe ansatz, we introduce symmetrical and
antisymmetrical Young operators of the permutation group and obtain the exact
solutions for the quantum DS1 system. The application of the solusions is
discussed.Comment: 14 pages, LaTeX fil
- âŠ