20 research outputs found

    Microstructural evolution of the coexistence for spinodal decomposition and ordering in Fe-23Al alloy during aging

    Get PDF
    The microstructural evolution of the coexistence ofspinodal decomposition and ordering ischaracterized by metallographic microscopy andtransmission electron microscopy in aged Fe-23Al(i.e. Fe-23at%Al) alloy. This paper discusses aphase transition mechanism of the microstructureevolution. The obtained results indicate that the asquenchedFe-23Al alloys with equiaxed grain sizeof about 500μm comprise two kinds of the orderedphase in nano-scale, i.e., B2-FeAl and DO3-Fe 3Alphases. The average size of B2-FeAl orderingphases is about 15nm, while the size of DO3-Fe 3Alordering phases is extreme fine in the as- quenchedFe-23Al alloys. The as-quenched Fe-23Al alloypresents characteristics of the coexistence ofspinodal decomposition and ordering during thesubsequent age ing at 565°C and 520°C. Thedomain size of B2-FeAl ordered phase rapidlyincreases while the one of DO3-Fe 3Al orderedphase slowly develops with the increase in agingtime/with increased ageing time. A conclusion isreached that the coarsening process of both B2-FeAl and DO3-Fe 3Al ordered phase is controlledby the spinodal decomposition mechanism

    Role of CD147 in the development and diagnosis of hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and the third leading cause of cancer-related deaths worldwide. HCC is characterized by insidious onset, and most patients are diagnosed at an advanced stage with a poor prognosis. Identification of biomarkers for HCC onset and progression is imperative to development of effective diagnostic and therapeutic strategies. CD147 is a glycoprotein that is involved in tumor cell invasion, metastasis and angiogenesis through multiple mechanisms. In this review, we describe the molecular structure of CD147 and its role in regulating HCC invasion, metastasis and angiogenesis. We highlight its potential as a diagnostic and therapeutic target for HCC

    Recent Advances on Composition-Microstructure-Properties Relationships of Precipitation Hardening Stainless Steel

    No full text
    Precipitation hardening stainless steels have attracted extensive interest due to their distinguished mechanical properties. However, it is necessary to further uncover the internal quantitative relationship from the traditional standpoint based on the statistical perspective. In this review, we summarize the latest research progress on the relationships among the composition, microstructure, and properties of precipitation hardened stainless steels. First, the influence of general chemical composition and its fluctuation on the microstructure and properties of PHSS are elaborated. Then, the microstructure and properties under a typical heat treatment regime are discussed, including the precipitation of B2-NiAl particles, Cu-rich clusters, Ni3Ti precipitates, and other co-existing precipitates in PHSS and the hierarchical microstructural features are presented. Next, the microstructure and properties after the selective laser melting fabricating process which act as an emerging technology compared to conventional manufacturing techniques are also enlightened. Thereafter, the development of multi-scale simulation and machine learning (ML) in material design is illustrated with typical examples and the great concerns in PHSS research are presented, with a focus on the precipitation techniques, effect of composition, and microstructure. Finally, promising directions for future precipitation hardening stainless steel development combined with multi-scale simulation and ML methods are prospected, offering extensive insight into the innovation of novel precipitation hardening stainless steels

    Role of exosomes in the development, diagnosis, prognosis and treatment of hepatocellular carcinoma

    No full text
    Abstract Hepatocellular carcinoma (HCC) is the most common primary liver cancer. It is characterized by occult onset resulting in most patients being diagnosed at advanced stages and with poor prognosis. Exosomes are nanoscale vesicles with a lipid bilayer envelope released by various cells under physiological and pathological conditions, which play an important role in the biological information transfer between cells. There is growing evidence that HCC cell-derived exosomes may contribute to the establishment of a favorable microenvironment that supports cancer cell proliferation, invasion, and metastasis. These exosomes not only provide a versatile platform for diagnosis but also serve as a vehicle for drug delivery. In this paper, we review the role of exosomes involved in the proliferation, migration, and metastasis of HCC and describe their application in HCC diagnosis and treatment. We also discuss the prospects of exosome application in HCC and the research challenges

    Accelerating Density Functional Calculation of Adatom Adsorption on Graphene via Machine Learning

    No full text
    Graphene has attracted significant interest due to its unique properties. Herein, we built an adsorption structure selection workflow based on a density functional theory (DFT) calculation and machine learning to provide a guide for the interfacial properties of graphene. There are two main parts in our workflow. One main part is a DFT calculation routine to generate a dataset automatically. This part includes adatom random selection, modeling adsorption structures automatically, and a calculation of adsorption properties. It provides the dataset for the second main part in our workflow, which is a machine learning model. The inputs are atomic characteristics selected by feature engineering, and the network features are optimized by a genetic algorithm. The mean percentage error of our model was below 35%. Our routine is a general DFT calculation accelerating routine, which could be applied to many other problems. An attempt on graphene/magnesium composites design was carried out. Our predicting results match well with the interfacial properties calculated by DFT. This indicated that our routine presents an option for quick-design graphene-reinforced metal matrix composites

    Effect of Temperatures and Graphene on the Mechanical Properties of the Aluminum Matrix: A Molecular Dynamics Study

    No full text
    Graphene has become an ideal reinforcement for reinforced metal matrix composites due to its excellent mechanical properties. However, the theory of graphene reinforcement in graphene/aluminum matrix composites is not yet well developed. In this paper, the effect of different temperatures on the mechanical properties of the metal matrix is investigated using a classical molecular dynamics approach, and the effects of the configuration and distribution of graphene in the metal matrix on the mechanical properties of the composites are also described in detail. It is shown that in the case of a monolayer graphene-reinforced aluminum matrix, the simulated stretching process does not break the graphene as the strain increases, but rather, the graphene and the aluminum matrix have a shearing behavior, and thus, the graphene “pulls out" from the aluminum matrix. In the parallel stretching direction, the tensile stress tends to increase with the increase of the graphene area ratio. In the vertical stretching direction, the tensile stress tends to decrease as the percentage of graphene area increases. In the parallel stretching direction, the tensile stress of the system tends to decrease as the angle between graphene and the stretching direction increases. It is important to investigate the effect of a different graphene distribution in the aluminum matrix on the mechanical properties of the composites for the design of high-strength graphene/metal matrix composites

    First-Principles Computation of Microscopic Mechanical Properties and Atomic Migration Behavior for Al<sub>4</sub>Si Aluminum Alloy

    No full text
    In this paper, the interfacial behavior and the atom diffusion behavior of an Al4Si alloy were systematically investigated by means of first-principles calculations. The K-points and cutoff energy of the computational system were determined by convergence tests, and the surface energies for five different surfaces of Al4Si alloys were investigated. Among the five surfaces investigated for Al4Si, it was found that the (111) surface was the surface with the lowest surface energy. Subsequently, we investigated the interfacial stability of the (111) surface and found that there were two types of interfaces, the Al/Al interface and the Al/Si interface. The fracture energies and theoretical strengths of the two interfaces were calculated; the results show that the Al/Al interface had the highest interfacial strength, and the calculation of their electronic results explained the above phenomenon. Subsequently, we investigated the diffusion and migration behavior of Si atoms in the alloy system, mainly in the form of vacancies. We considered the diffusion of Si atoms in vacancies of Al and Si atoms, respectively; the results showed that Si atoms are more susceptible to diffusive migration to Al atomic vacancies than to Si atomic vacancies. The results of the calculations on the micromechanics of aluminum alloys, as well as the diffusion migration behavior, provide a theoretical basis for the further development of new aluminum alloys

    Effect of cooling rate on microstructure and mechanical properties of AlCrFe2Ni2 medium entropy alloy fabricated by laser powder bed fusion

    No full text
    The mechanical properties and serviceability of the alloy fabricated by laser powder bed fusion (L-PBF) additive manufacturing (AM) strongly depend on the phase composition and microstructure, which are affected by the thermal condition of the process, such us cooling rate. In this study, AlCrFe2Ni2 medium entropy alloy (MEA) was fabricated by L-PBF under varying cooling rate via changing process parameters. The phase transformation, microstructure and mechanical properties were experimentally investigated using X-ray diffraction (XRD), scanning transmission electron microscopy (TEM), scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The cooling rate was numerically calculated using a well-tested multi-physic thermal fluid model. The results showed that cooling rate had a significant effect on phase composition, microstructure and mechanical properties. The as-built MEA with lower cooling rate showed a nano-size structure composed of BCC and ordered B2 phases and a higher yield strength of 2055 MPa. While for the higher cooling rate, the as-built MEA showed a homogeneous structure consisted of single ordered B2 phase and a lower yield strength of 1544 MPa. The threshold value of cooling rate for phase transformation was between 4.9 × 106 K/s and 6.0 × 106 K/s. Through the strengthening mechanism analysis, it was crucial to achieve the nano-size dual-phase microstructure by manipulating cooling for obtaininng desirable mechanical properties in L-PBF AMed AlCrFe2Ni2 MEA
    corecore