72 research outputs found

    An enhanced tool for heat exchanger network retrofit towards cleaner processes

    Get PDF
    The individual stream temperature versus enthalpy plot (STEP) is a graphical tool that can be used to simultaneously diagnose and retrofit existing heat exchanger networks (HEN). The Modified Energy Transfer Diagram (ETD) utilises the Grand Composite Curve (GCC) to provide insights on the scope for HEN retrofit and to pinpoint retrofit alternatives based on the Bridge Analysis method. Both the STEP and the Modified ETD methods are based on graphical representation of individual process streams that enable users to visually identify the potential scope for improvement in an existing HEN. It is found that, using the distance of the horizontal gap between the stream pairs of the STEP diagram can simplify the construction of the Modified ETD. The Modified ETD can help monitor the progress of HEN retrofit. This paper shows through a case study that, combining the use of STEP-ETD methods can simplify, facilitate and enhance the simultaneous targeting, diagnosis and retrofit of a HEN toward achieving cleaner processes, while yielding the same final retrofitted structure like those produced by using only the Modified ETD

    Synchronous right hepatectomy and cesarean section in a pregnant lady with hepatocellular carcinoma

    Get PDF
    AbstractINTRODUCTIONCancer in pregnancy is rare and hepatocellular carcinoma (HCC) during pregnancy is even rarer. Due to limited experience, management of these patients remains challenging.PRESENTATION OF CASEA 33-year old pregnant lady presented with HCC at 28 weeks of gestation. She underwent synchronous cesarean section and right hepatectomy at 32 weeks of gestation. The post-operative course was uneventful. She was discharged home on day 10 after surgery. Histolopathology confirmed HCC. The surgical resection margins were clear. At a follow-up of 3 months after surgery, the mother was disease free and the infant was well.DISCUSSIONHCC during pregnancy is extremely rare. The experience in its management and outcomes are lacking. In managing any patient diagnosed with a malignant neoplasm in pregnancy, both the mother and the fetus have to be considered.CONCLUSIONWith adequate preoperative assessment and a good management strategy, good results can be obtained for both the mother and the baby for a pregnant patient with HCC

    Bacterial image analysis using multi-task deep learning approaches for clinical microscopy

    Get PDF
    Background Bacterial image analysis plays a vital role in various fields, providing valuable information and insights for studying bacterial structural biology, diagnosing and treating infectious diseases caused by pathogenic bacteria, discovering and developing drugs that can combat bacterial infections, etc. As a result, it has prompted efforts to automate bacterial image analysis tasks. By automating analysis tasks and leveraging more advanced computational techniques, such as deep learning (DL) algorithms, bacterial image analysis can contribute to rapid, more accurate, efficient, reliable, and standardised analysis, leading to enhanced understanding, diagnosis, and control of bacterial-related phenomena. Methods Three object detection networks of DL algorithms, namely SSD-MobileNetV2, EfficientDet, and YOLOv4, were developed to automatically detect Escherichia coli (E. coli) bacteria from microscopic images. The multi-task DL framework is developed to classify the bacteria according to their respective growth stages, which include rod-shaped cells, dividing cells, and microcolonies. Data preprocessing steps were carried out before training the object detection models, including image augmentation, image annotation, and data splitting. The performance of the DL techniques is evaluated using the quantitative assessment method based on mean average precision (mAP), precision, recall, and F1-score. The performance metrics of the models were compared and analysed. The best DL model was then selected to perform multi-task object detections in identifying rod-shaped cells, dividing cells, and microcolonies. Results The output of the test images generated from the three proposed DL models displayed high detection accuracy, with YOLOv4 achieving the highest confidence score range of detection and being able to create different coloured bounding boxes for different growth stages of E. coli bacteria. In terms of statistical analysis, among the three proposed models, YOLOv4 demonstrates superior performance, achieving the highest mAP of 98% with the highest precision, recall, and F1-score of 86%, 97%, and 91%, respectively. Conclusions This study has demonstrated the effectiveness, potential, and applicability of DL approaches in multi-task bacterial image analysis, focusing on automating the detection and classification of bacteria from microscopic images. The proposed models can output images with bounding boxes surrounding each detected E. coli bacteria, labelled with their growth stage and confidence level of detection. All proposed object detection models have achieved promising results, with YOLOv4 outperforming the other models

    Meta-analysis Followed by Replication Identifies Loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as Associated with Systemic Lupus Erythematosus in Asians

    Get PDF
    Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic involvement and ethnic differences. Susceptibility genes identified so far only explain a small portion of the genetic heritability of SLE, suggesting that many more loci are yet to be uncovered for this disease. In this study, we performed a meta-analysis of genome-wide association studies on SLE in Chinese Han populations and followed up the findings by replication in four additional Asian cohorts with a total of 5,365 cases and 10,054 corresponding controls. We identified genetic variants in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with the disease. These findings point to potential roles of cell-cycle regulation, autophagy, and DNA demethylation in SLE pathogenesis. For the region involving TET3 and that involving CDKN1B, multiple independent SNPs were identified, highlighting a phenomenon that might partially explain the missing heritability of complex diseases

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF
    corecore