26,576 research outputs found

    Asteroseismology of the δ\delta Scuti star HD 50844

    Full text link
    Aims. We aim to probe the internal structure and investigate more detailed information of the δ\delta Scuti star HD 50844 with asteroseismology. Methods. We analyse the observed frequencies of the δ\delta Scuti star HD 50844 obtained by Balona (2014), and search for possible multiplets based on the rotational splitting law of g-mode. We tried to disentangle the frequency spectra of HD 50844 by means of the rotational splitting only. We then compare them with theoretical pulsation modes, which correspond to stellar evolutionary models with various sets of initial metallicity and stellar mass, to find the best-fitting model. Results. There are three multiplets including two complete triplets and one incomplete quintuplet, in which mode identifications for spherical harmonic degree ll and azimuthal number mm are unique. The corresponding rotational period of HD 50844 is found to be 2.44−0.08+0.13^{+0.13}_{-0.08} days. The physical parameters of HD 50844 are well limited in a small region by three modes identified as nonradial ones (f11f_{11}, f22f_{22}, and f29f_{29}) and by the fundamental radial mode (f4f_{4}). Our results show that the three nonradial modes (f11f_{11}, f22f_{22}, and f29f_{29}) are all mixed modes, which mainly represent the property of the helium core. The fundamental radial mode (f4f_{4}) mainly represents the property of the stellar envelope. In order to fit these four pulsation modes, both the helium core and the stellar envelope must be matched to the actual structure of HD 50844. Finally, the mass of the helium core of HD 50844 is estimated to be 0.173 ±\pm 0.004 M⊙M_{\odot} for the first time. The physical parameters of HD 50844 are determined to be M=M= 1.81 ±\pm 0.01 M⊙M_{\odot}, Z=Z= 0.008 ±\pm 0.001. Teff=T_{\rm eff}= 7508 ±\pm 125 K, logg=g= 3.658 ±\pm 0.004, R=R= 3.300 ±\pm 0.023 R⊙R_{\odot}, L=L= 30.98 ±\pm 2.39 L⊙L_{\odot}.Comment: 11 pages, 7 figures, 6 tables, accepted for publication in A&

    Calibration of shielded microwave probes using bulk dielectrics

    Full text link
    A stripline-type near-field microwave probe is microfabricated for microwave impedance microscopy. Unlike the poorly shielded coplanar probe that senses the sample tens of microns away, the stripline structure removes the stray fields from the cantilever body and localizes the interaction only around the focused-ion beam deposited Pt tip. The approaching curve of an oscillating tip toward bulk dielectrics can be quantitatively simulated and fitted to the finite-element analysis result. The peak signal of the approaching curve is a measure of the sample dielectric constant and can be used to study unknown bulk materials.Comment: 10 pages, 3 figure

    Spontaneous Magnetization of Solid Quark-cluster Stars

    Full text link
    Pulsar-like compact stars usually have strong magnetic fields, with the strength from ∼108\sim 10^8 to ∼1012\sim 10^{12} Gauss on surface. How such strong magnetic fields can be generated and maintained is still an unsolved problem, which is, in principle, related to the interior structure of compact stars, i.e., the equation of state of cold matter at supra-nuclear density. In this paper we are trying to solve the problem in the regime of solid quark-cluster stars. Inside quark-cluster stars, the extremely low ratio of number density of electrons to that of baryons ne/nbn_e/n_b and the screening effect from quark-clusters could reduce the long-range Coulomb interaction between electrons to short-range interaction. In this case, the Stoner's model could apply, and we find that the condition for ferromagnetism is consistent with that for validity of Stoner's model. Under the screened Coulomb repulsion, the electrons inside the stars could spontaneously magnetized and become ferromagnetic, and hence would contribute non-zero net magnetic momentum to the whole star. We conclude that, for most cases in solid quark-cluster stars, the amount of net magnetic momentum, which is proportional to the amount of unbalanced spins ξ=(n+−n−)/ne\xi=(n_+-n_-)/n_e and depends on the number density of electrons ne=n++n−n_e=n_++n_-, could be significant with non-zero ξ\xi. The net magnetic moments of electron system in solid quark-cluster stars could be large enough to induce the observed magnetic fields for pulsars with B∼1011B\sim 10^{11} to ∼1013\sim 10^{13} Gauss.Comment: 7 pages, 1 figure. Accepted by Chinese Physics
    • …
    corecore