36,586 research outputs found
How strong are the Rossby vortices?
The Rossby wave instability, associated with density bumps in differentially
rotating discs, may arise in several different astrophysical contexts, such as
galactic or protoplanetary discs. While the linear phase of the instability has
been well studied, the nonlinear evolution and especially the saturation phase
remain poorly understood. In this paper, we test the non-linear saturation
mechanism analogous to that derived for wave-particle interaction in plasma
physics. To this end we perform global numerical simulations of the evolution
of the instability in a two-dimensional disc. We confirm the physical mechanism
for the instability saturation and show that the maximum amplitude of vorticity
can be estimated as twice the linear growth rate of the instability. We provide
an empirical fitting formula for this growth rate for various parameters of the
density bump. We also investigate the effects of the azimuthal mode number of
the instability and the energy leakage in the spiral density waves. Finally, we
show that our results can be extrapolated to 3D discs.Comment: Accepted for publication in MNRA
Power-Law Behavior of Bond Energy Correlators in a Kitaev-type Model with a Stable Parton Fermi Surface
We study bond energy correlation functions in an exactly solvable quantum
spin model of Kitaev type on the kagome lattice with stable Fermi surface of
partons proposed recently by Chua et al, Ref.\[arXiv:1010.1035]. Even though
any spin correlations are ultra-short ranged, we find that the bond energy
correlations have power law behavior with a envelope and
oscillations at incommensurate wavevectors. We determine the corresponding
singular surfaces in momentum space, which provide a gauge-invariant
characterization of this gapless spin liquid.Comment: 6 pages, 5 figure
Experimental investigation of the effects of polarization on the measured radiation efficiency of a dielectric resonator antenna
©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.The radiation efficiencies of two rectangular dielectric resonant antennas (DRAs) were investigated using the directivity/ gain (D/G) method and the Wheeler cap method. Both antennas are linearly polarized but have different linear polarization purities. Through comparison of their radiation efficiencies, itpsilas shown that the polarization purity strongly affects the D/G measurement of the DRAspsila radiation efficiency.Qinghua Lai, Georgios Almpanis, Christophe Fumeaux, Hansruedi Benedickter, and Rüdiger Vahldiec
Majorana Spin Liquids on a two-leg ladder
We realize a gapless Majorana Orbital Liquid (MOL) using orbital degrees of
freedom and also an SU(2)-invariant Majorana Spin Liquid (MSL) using both spin
and orbital degrees of freedom in Kitaev-type models on a 2-leg ladder. The
models are exactly solvable by Kitaev's parton approach, and we obtain
long-wavelength descriptions for both Majorana liquids. The MOL has one gapless
mode and power law correlations in energy at incommensuare wavevectors, while
the SU(2) MSL has three gapless modes and power law correlations in spin,
spin-nematic, and local energy observables. We study the stability of such
states to perturbations away from the exactly solvable points. We find that
both MOL and MSL can be stable against allowed short-range parton interactions.
We also argue that both states persist upon allowing gauge field
fluctuations, in that the number of gapless modes is retained, although with an
expanded set of contributions to observables compared to the free parton mean
field.Comment: 15 pages, 6 figures. Revised versio
Viscous three-dimensional analyses for nozzles for hypersonic propulsion
A Navier-Stokes computer code was validated using a number of two- and three-dimensional configurations for both laminar and turbulent flows. The validation data covers a range of freestream Mach numbers from 3 to 14, includes wall pressures, velocity profiles, and skin friction. Nozzle flow fields computed for a generic scramjet nozzle from Mach 3 to 20, wall pressures, wall skin friction values, heat transfer values, and overall performance are presented. In addition, three-dimensional solutions obtained for two asymmetric, single expansion ramp nozzles at a pressure ratio of 10 consists of the internal expansion region in the converging/diverging sections and the external supersonic exhaust in a quiescent ambient environment. The fundamental characteristics that were captured successfully include expansion fans; Mach wave reflections; mixing layers; and nonsymmetrical, multiple inviscid cell, supersonic exhausts. Comparison with experimental data for wall pressure distributions at the center planes shows good agreement
A compressible near-wall turbulence model for boundary layer calculations
A compressible near-wall two-equation model is derived by relaxing the assumption of dynamical field similarity between compressible and incompressible flows. This requires justifications for extending the incompressible models to compressible flows and the formulation of the turbulent kinetic energy equation in a form similar to its incompressible counterpart. As a result, the compressible dissipation function has to be split into a solenoidal part, which is not sensitive to changes of compressibility indicators, and a dilational part, which is directly affected by these changes. This approach isolates terms with explicit dependence on compressibility so that they can be modeled accordingly. An equation that governs the transport of the solenoidal dissipation rate with additional terms that are explicitly dependent on the compressibility effects is derived similarly. A model with an explicit dependence on the turbulent Mach number is proposed for the dilational dissipation rate. Thus formulated, all near-wall incompressible flow models could be expressed in terms of the solenoidal dissipation rate and straight-forwardly extended to compressible flows. Therefore, the incompressible equations are recovered correctly in the limit of constant density. The two-equation model and the assumption of constant turbulent Prandtl number are used to calculate compressible boundary layers on a flat plate with different wall thermal boundary conditions and free-stream Mach numbers. The calculated results, including the near-wall distributions of turbulence statistics and their limiting behavior, are in good agreement with measurements. In particular, the near-wall asymptotic properties are found to be consistent with incompressible behavior; thus suggesting that turbulent flows in the viscous sublayer are not much affected by compressibility effects
Shadowing Effects on the Nuclear Suppression Factor, R_dAu, in d+Au Interactions
We explore how nuclear modifications to the nucleon parton distributions
affect production of high transverse momentum hadrons in deuteron-nucleus
collisions. We calculate the charged hadron spectra to leading order using
standard fragmentation functions and shadowing parameterizations. We obtain the
d+Au to pp ratio both in minimum bias collisions and as a function of
centrality. The minimum bias results agree reasonably well with the BRAHMS data
while the calculated centrality dependence underestimates the data and is a
stronger function of p_T than the data indicate.Comment: 18 pages, 3 figures, final version, Phys. Rev. C in pres
- …