30,618 research outputs found
Determining the strange and antistrange quark distributions of the nucleon
The difference between the strange and antistrange quark distributions,
\delta s(x)=s(x)-\sbar(x), and the combination of light quark sea and strange
quark sea, \Delta (x)=\dbar(x)+\ubar(x)-s(x)-\sbar(x), are originated from
non-perturbative processes, and can be calculated using non-perturbative models
of the nucleon. We report calculations of and using
the meson cloud model. Combining our calculations of with
relatively well known light antiquark distributions obtained from global
analysis of available experimental data, we estimate the total strange sea
distributions of the nucleon.Comment: 4 pages, 3 figures; talk given by F.-G. at QNP0
Multivariate Fitting and the Error Matrix in Global Analysis of Data
When a large body of data from diverse experiments is analyzed using a
theoretical model with many parameters, the standard error matrix method and
the general tools for evaluating errors may become inadequate. We present an
iterative method that significantly improves the reliability of the error
matrix calculation. To obtain even better estimates of the uncertainties on
predictions of physical observables, we also present a Lagrange multiplier
method that explores the entire parameter space and avoids the linear
approximations assumed in conventional error propagation calculations. These
methods are illustrated by an example from the global analysis of parton
distribution functions.Comment: 13 pages, 5 figures, Latex; minor clarifications, fortran program
made available; Normalization of Hessian matrix changed to HEP standar
Orbital and valley state spectra of a few-electron silicon quantum dot
Understanding interactions between orbital and valley quantum states in
silicon nanodevices is crucial in assessing the prospects of spin-based qubits.
We study the energy spectra of a few-electron silicon metal-oxide-semiconductor
quantum dot using dynamic charge sensing and pulsed-voltage spectroscopy. The
occupancy of the quantum dot is probed down to the single-electron level using
a nearby single-electron transistor as a charge sensor. The energy of the first
orbital excited state is found to decrease rapidly as the electron occupancy
increases from N=1 to 4. By monitoring the sequential spin filling of the dot
we extract a valley splitting of ~230 {\mu}eV, irrespective of electron number.
This indicates that favorable conditions for qubit operation are in place in
the few-electron regime.Comment: 4 figure
- …