30 research outputs found
Benzoate mediates the simultaneous repression of anaerobic 4-methylbenzoate and succinate utilization in Magnetospirillum sp. strain pMbN1
Background: At high concentrations of organic substrates, microbial utilization of preferred substrates (i.e., supporting fast growth) often results in diauxic growth with hierarchical substrate depletion. Unlike the carbon catabolite repression-mediated discriminative utilization of carbohydrates, the substrate preferences of non-carbohydrate-utilizing bacteria for environmentally relevant compound classes (e.g., aliphatic or aromatic acids) are rarely investigated. The denitrifying alphaproteobacterium Magnetospirillum sp. strain pMbN1 anaerobically degrades a wide variety of aliphatic and aromatic compounds and is unique for anaerobic degradation of 4-methylbenzoate. The latter proceeds via a distinct reaction sequence analogous to the central anaerobic benzoyl-CoA pathway to intermediates of central metabolism. Considering the presence of these two different anaerobic "aromatic ring degrading" pathways, substrate preferences of Magnetospirillum sp. strain pMbN1 were investigated. Anaerobic growth and substrate consumption were monitored in binary and ternary mixtures of 4-methylbenzoate, benzoate and succinate, in conjuction with time-resolved abundance profiling of selected transcripts and/or proteins related to substrate uptake and catabolism. Results: Diauxic growth with benzoate preference was observed for binary and ternary substrate mixtures containing 4-methylbenzoate and succinate (despite adaptation of Magnetospirillum sp. strain pMbN1 to one of the latter two substrates). On the contrary, 4-methylbenzoate and succinate were utilized simultaneously from a binary mixture, as well as after benzoate depletion from the ternary mixture. Apparently, simultaneous repression of 4-methylbenzoate and succinate utilization from the ternary substrate mixture resulted from (i) inhibition of 4-methylbenzoate uptake, and (ii) combined inhibition of succinate uptake (via the two transporters DctPQM and DctA) and succinate conversion to acetyl-CoA (via pyruvate dehydrogenase). The benzoate-mediated repression of C4-dicarboxylate utilization in Magnetospirillum sp. strain pMbN1 differs from that recently described for "Aromatoleum aromaticum" EbN1 (involving only DctPQM). Conclusions: The preferential or simultaneous utilization of benzoate and other aromatic acids from mixtures with aliphatic acids may represent a more common nutritional behavior among (anaerobic) degradation specialist than previously thought. Preference of Magnetospirillum sp. strain pMbN1 for benzoate from mixtures with 4-methylbenzoate, and thus temporal separation of the benzoyl-CoA (first) and 4-methylbenzoyl-CoA (second) pathway, may reflect a catabolic tuning towards metabolic efficiency and the markedly broader range of aromatic substrates feeding into the central anaerobic benzoyl-CoA pathway
Stone-free rate (SFR): a new proposal for defining levels of SFR
There is a lack of consensus in the definition of stone-free rate (SFR) after ureteric or renal stone surgery. We propose a simple classification to define levels of SFR post-treatment.</p
No evidence for point mutations in the novel renal cystine transporter AGT1/SLC7A13 contributing to the etiology of cystinuria
Abstract Background Cystinuria is caused by the defective renal reabsorption of cystine and dibasic amino acids, and results in cystine stone formation. So far, mutations in two genes have been identified as causative. The SLC3A1/rBAT gene encodes the heavy subunit of the heterodimeric rBAT-b0,+AT transporter, whereas the light chain is encoded by the SLC7A9/ b 0,+ AT gene. In nearly 85% of patients mutations in both genes are detectable, but a significant number of patients currently remains without a molecular diagnosis. Thus, the existence of a further cystinuria gene had been suggested, and the recently identified AGT1/SLC7A13 represents the long-postulated partner of rBAT and third cystinuria candidate gene. Methods We screened a cohort of 17 cystinuria patients for SLC7A13 variants which were negative for SLC3A1 and SLC7A9 mutations. Results Despite strong evidences for an involvement of SLC7A13Â mutations in cystinuria, we could not confirm a relevant role of SLC7A13 for the disease. Conclusion With the exclusion of SLC7A13/AGT1 as the third cystinuria gene accounting for the SLC3A1 and SLC7A9 mutation negative cases, it becomes obvious that other genetic factors should be responsible for the cystinuria phenotype in nearly 15% of patients