5 research outputs found

    NACK and INTEGRATOR act coordinately to activate Notch-mediated transcription in tumorigenesis

    No full text
    Abstract Background Notch signaling drives many aspects of neoplastic phenotype. Here, we report that the Integrator complex (INT) is a new component of the Notch transcriptional supercomplex. Together with Notch Activation Complex Kinase (NACK), INT activates Notch1 target genes by driving RNA polymerase II (RNAPII)-dependent transcription, leading to tumorigenesis. Methods Size exclusion chromatography and CBF-1/RBPJ/Suppressor of Hairless/Lag-1 (CSL)-DNA affinity fast protein liquid chromatography (FPLC) was used to purify Notch/CSL-dependent complexes for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Chromatin immunoprecipitation (ChIP) and quantitative polymerase chain reaction (qPCR) were performed to investigate transcriptional regulation of Notch target genes. Transfection of Notch Ternary Complex components into HEK293T cells was used as a recapitulation assay to study Notch-mediated transcriptional mechanisms. Gene knockdown was achieved via RNA interference and the effects of protein depletion on esophageal adenocarcinoma (EAC) proliferation were determined via a colony formation assay and murine xenografts. Western blotting was used to examine expression of INT subunits in EAC cells and evaluate apoptotic proteins upon INT subunit 11 knockdown (INTS11 KD). Gene KD effects were further explored via flow cytometry. Results We identified the INT complex as part of the Notch transcriptional supercomplex. INT, together with NACK, activates Notch-mediated transcription. While NACK is required for the recruitment of RNAPII to a Notch-dependent promoter, the INT complex is essential for RNAPII phosphorylated at serine 5 (RNAPII-S5P), leading to transcriptional activation. Furthermore, INT subunits are overexpressed in EAC cells and INTS11 KD results in G2/M cell cycle arrest, apoptosis, and cell growth arrest in EAC. Conclusions This study identifies the INT complex as a novel co-factor in Notch-mediated transcription that together with NACK activates Notch target genes and leads to cancer cell proliferation

    Pharmacological disruption of the Notch1 transcriptional complex inhibits tumor growth by selectively targeting cancer stem cells

    No full text
    In many human cancers, deregulation of the Notch pathway has been shown to play a role in the initiation and maintenance of the neoplastic phenotype. Aberrant Notch activity also plays a central role in the maintenance and survival of cancer stem cells, which underlie metastasis and resistance to therapy. For these reasons, inhibition of Notch signaling has become an exceedingly attractive target for cancer therapeutic development. However, attempts to develop Notch pathway specific drugs have largely failed in the clinic, in part due to intestinal toxicity. Here we report the discovery of NADI-351, the first specific small molecule inhibitor of Notch1 transcriptional complexes. NADI-351 selectively disrupted Notch1 transcription complexes and reduced Notch1 recruitment to target genes. NADI-351 demonstrated robust anti-tumor activity without inducing intestinal toxicity in mouse models, and cancer stem cells were ablated by NADI-351 treatment. Our study demonstrates that NADI-351 is an orally available and potent inhibitor of Notch1-mediated transcription that inhibits tumor growth with low toxicity, providing a potential therapeutic approach for improved cancer treatment

    Finding hidden females in a crowd: Mate recognition in fig wasps

    No full text
    Multi-species mating aggregations are crowded environments within which mate recognition must occur. Mating aggregations of fig wasps can consist of thousands of individuals of many species that attain sexual maturity simultaneously and mate in the same microenvironment, i.e, in syntopy, within the close confines of an enclosed globular inflorescence called a syconium - a system that has many signalling constraints such as darkness and crowding. All wasps develop within individual galled flowers. Since mating mostly occurs when females are still confined within their galls,, male wasps have the additional burden of detecting conspecific females that are ``hidden'' behind barriers consisting of gall walls. In Ficus racemosa, we investigated signals used by pollinating fig wasp males to differentiate conspecific females from females of other syntopic fig wasp species. Male Ceratosolen fusciceps could detect conspecific females using cues from galls containing females, empty galls, as well as cues from gall volatiles and gall surface hydrocarbons. In many figs, syconia are pollinated by single foundress wasps, leading to high levels of wasp inbreeding due to sibmating. In F. racemosa, as most syconia contain many foundresses, we expected male pollinators to prefer non-sib females to female siblings to reduce inbreeding. We used galls containing females from non-natal figs as a proxy for non-sibs and those from natal figs as a proxy for sibling females. We found that males preferred galls of female pollinators from natal figs. However, males were undecided when given a choice between galls containing non-pollinator females from natal syconia and pollinator females from non-natal syconia, suggesting olfactory imprinting by the natal syconial environment. (C) 2013 Elsevier Masson SAS. All rights reserved
    corecore