3,177 research outputs found

    Large rotating AdS black holes from fluid mechanics

    Full text link
    We use the AdS/CFT correspondence to argue that large rotating black holes in global AdS(D) spaces are dual to stationary solutions of the relativistic Navier-Stokes equations on S**(D-2). Reading off the equation of state of this fluid from the thermodynamics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to rotating black holes. In all known examples, the thermodynamics and the local stress tensor of our solutions are in precise agreement with the thermodynamics and boundary stress tensor of the spinning black holes. Our fluid dynamical description applies to large non-extremal black holes as well as a class of large non-supersymmetric extremal black holes, but is never valid for supersymmetric black holes. Our results yield predictions for the thermodynamics of all large black holes in all theories of gravity on AdS spaces, for example, string theory on AdS(5) x S**5 and M theory on AdS(4) x S**7 and AdS(7) x S**4.Comment: 62 pages, 1 figure. v2: references, typo

    Topologically Massive Non-Abelian Gauge Theories: Constraints and Deformations

    Get PDF
    We study the relationship between three non-Abelian topologically massive gauge theories, viz. the naive non-Abelian generalization of the Abelian model, Freedman-Townsend model and the dynamical 2-form theory, in the canonical framework. Hamiltonian formulation of the naive non-Abelian theory is presented first. The other two non-Abelian models are obtained by deforming the constraints of this model. We study the role of the auxiliary vector field in the dynamical 2-form theory in the canonical framework and show that the dynamical 2-form theory cannot be considered as the embedded version of naive non-Abelian model. The reducibility aspect and gauge algebra of the latter models are also discussed.Comment: ReVTeX, 17 pp; one reference added, version published in Phys. Rev.

    How restricting carbon dioxide and methane emissions would affect the Indian economy

    Get PDF
    India and China contain about 40 percent of the earth's people. They are at an early stage of economic development, and their increasingly massive energy requirements will depend heavily on coal, a potent source of carbon dioxide, a powerful and long-lasting greenhouse gas. India also has important sources and uses of hydroelectric and nuclear power, petroleum, and natural gas. Agriculture still produces about 30 percent of its gross domestic product, and about 72 percent of the population lives in rural areas - with their large animal populations and substantial forest acreage. India has vast cities and an industrial sector that is large in absolute terms, although it represents only 30 percent of the economy. The model developed to analyze the economic effects of constraints on greenhouse gas emissions is a multisectoral, intertemporal linear programming model, driven by the optimization of the welfare of a representative consumer. A comprehensive model was built not to project the future at a single stroke but to begin to answer questions of a"What if?"form. The results strongly suggest that the economic effects on India of such constraints would be profound. The implications of different forms of emissions restrictions - annual, cumulative, and radiative forcing - deserve more attention. Cumulative restrictions - or better still, restrictions on radiative forcing - are closely related to public policy on greenhouse effects. Such restrictions also provide significant additional degrees of freedom for the economic adjustments required. They do this, in part, by allowing the postponement of emissions restrictions, which is not permitted by annual constraints. Of course, the question arises whether a country, having benefited from postponing a required reduction in emissions, would then be willing to face the consequences in economic losses. Might there be a genuine preference - albeit an irrational one - for taking the losses annually? Would compliance with international agreements for emissions restrictions be more likely if they required annual, rather than cumulative, reductions? Monitoring requirements would be the same in either case; if effective monitoring were carried out, it would detect departures from cumulative or radiative forcing constraints just as easily as departures from annualconstraints.Environmental Economics&Policies,Carbon Policy and Trading,Montreal Protocol,Transport and Environment,Energy and Environment

    Growth and welfare losses from carbon emissions restrictions : a general equilibrium analysis for Egypt

    Get PDF
    The authors assess the economic effects in Egypt, under various conditions, of restricting carbon dioxide emissions. They use their model to assess the sensitivity of these effects to alternative specifications: changes in the level or timing of restrictions, changes in the rate of discount of future welfare, and the presence or absence of alternative technologies for generating power. They also analyze a constraint on accumulated emissions of carbon dioxide. Their time model has a time horizon of 100 years, with detailed accounting for every five years, so they can be specific about differences between short- and long-run effects and their implications. However, the results reported here cover only a 60-year period - and are intended only to compare the results of generic,"what if?"questions, not as forecasts. In that 60-year period, the model economy substantially depletes its hydrocarbon reserves, which are the only non produced resource. The authors find that welfare losses due to the imposition of annual restrictions on the rate of carbon dioxide emissions are substantial - ranging from 4.5 percent for a 20 percent reduction in annual carbon dioxide emissions to 22 percent for a 40 percent reduction. The effects of the annual emissions restrictions are relatively nonlinear. The timing of the restrictions is significant. Postponing them provides a longer period for adjustment and makes it possible to continue delivering consumption goodsin a relatively unconstrained manner. The form of emissions restrictions is also important. Welfare losses are much higher when constraints are imposed on annual emissions rates rather than on total additions to the accumulation of greenhouse gases. Conventional backstop technologies for maintaining output and consumption - cogeneration, nuclear power, and gas-powered transport - are more significant than unconventional"renewable"technologies, which cannot compete for cost.Environmental Economics&Policies,Energy and Environment,Carbon Policy and Trading,Montreal Protocol,Climate Change

    Parallel transport on non-Abelian flux tubes

    Full text link
    I propose a way of unambiguously parallel transporting fields on non-Abelian flux tubes, or strings, by means of two gauge fields. One gauge field transports along the tube, while the other transports normal to the tube. Ambiguity is removed by imposing an integrability condition on the pair of fields. The construction leads to a gauge theory of mathematical objects known as Lie 2-groups, which are known to result also from the parallel transport of the flux tubes themselves. The integrability condition is also shown to be equivalent to the assumption that parallel transport along nearby string configurations are equal up to arbitrary gauge transformations. Attempts to implement this condition in a field theory leads to effective actions for two-form fields.Comment: significant portions of text rewritten, references adde

    BRST analysis of topologically massive gauge theory: novel observations

    Full text link
    A dynamical non-Abelian 2-form gauge theory (with B \wedge F term) is endowed with the "scalar" and "vector" gauge symmetry transformations. In our present endeavor, we exploit the latter gauge symmetry transformations and perform the Becchi-Rouet-Stora-Tyutin (BRST) analysis of the four (3 + 1)-dimensional (4D) topologically massive non-Abelian 2-form gauge theory. We demonstrate the existence of some novel features that have, hitherto, not been observed in the context of BRST approach to 4D (non-)Abelian 1-form as well as Abelian 2-form and 3-form gauge theories. We comment on the differences between the novel features that emerge in the BRST analysis of the "scalar" and "vector" gauge symmetries of the theory.Comment: LaTeX file, 14 pages, an appendix added, references expanded, version to appear in EPJ
    • …
    corecore