5 research outputs found

    General Terms

    Full text link
    We consider the parallels between the preference elicitation problem in combinatorial auctions and the problem of learning an unknown function from learning theory. We show that learning algorithms can be used as a basis for preference elicitation algorithms. The resulting elicitation algorithms perform a polynomial number of queries. We also give conditions under which the resulting algorithms have polynomial communication. Our conversion procedure allows us to generate combinatorial auction protocols from learning algorithms for polynomials, monotone DNF, and linear-threshold functions. In particular, we obtain an algorithm that elicits XOR bids with polynomial communication

    Predicting consumer behavior with Web search

    Full text link
    Recent work has demonstrated that Web search volume can “predict the present,” meaning that it can be used to accurately track outcomes such as unemployment levels, auto and home sales, and disease prevalence in near real time. Here we show that what consumers are searching for online can also predict their collective future behavior days or even weeks in advance. Specifically we use search query volume to forecast the opening weekend box-office revenue for feature films, first-month sales of video games, and the rank of songs on the Billboard Hot 100 chart, finding in all cases that search counts are highly predictive of future outcomes. We also find that search counts generally boost the performance of baseline models fit on other publicly available data, where the boost varies from modest to dramatic, depending on the application in question. Finally, we reexamine previous work on tracking flu trends and show that, perhaps surprisingly, the utility of search data relative to a simple autoregressive model is modest. We conclude that in the absence of other data sources, or where small improvements in predictive performance are material, search queries provide a useful guide to the near future
    corecore