750 research outputs found
Reconstruction of the second layer of Ag on Pt(111)
The reconstruction of an Ag monolayer on Ag/Pt(111) is analyzed
theoretically, employing a vertically extended Frenkel-Kontorova model whose
parameters are derived from density functional theory. Energy minimization is
carried out using simulated quantum annealing techniques. Our results are
compatible with the STM experiments, where a striped pattern is initially found
which transforms into a triangular reconstruction upon annealing. In our model
we recognize the first structure as a metastable state, while the second one is
the true energy minimum
Numerical stability of a new conformal-traceless 3+1 formulation of the Einstein equation
There is strong evidence indicating that the particular form used to recast
the Einstein equation as a 3+1 set of evolution equations has a fundamental
impact on the stability properties of numerical evolutions involving black
holes and/or neutron stars. Presently, the longest lived evolutions have been
obtained using a parametrized hyperbolic system developed by Kidder, Scheel and
Teukolsky or a conformal-traceless system introduced by Baumgarte, Shapiro,
Shibata and Nakamura. We present a new conformal-traceless system. While this
new system has some elements in common with the
Baumgarte-Shapiro-Shibata-Nakamura system, it differs in both the type of
conformal transformations and how the non-linear terms involving the extrinsic
curvature are handled. We show results from 3D numerical evolutions of a
single, non-rotating black hole in which we demonstrate that this new system
yields a significant improvement in the life-time of the simulations.Comment: 7 pages, 2 figure
Rare earth based nanostructured materials: Synthesis, functionalization, properties and bioimaging and biosensing applications
Rare earth based nanostructures constitute a type of functional materials widely used and studied in the recent literature. The purpose of this review is to provide a general and comprehensive overview of the current state of the art, with special focus on the commonly employed synthesis methods and functionalization strategies of rare earth based nanoparticles and on their different bioimaging and biosensing applications. The luminescent (including downconversion, upconversion and permanent luminescence) and magnetic properties of rare earth based nanoparticles, as well as their ability to absorb X-rays, will also be explained and connected with their luminescent, magnetic resonance and X-ray computed tomography bioimaging applications, respectively. This review is not only restricted to nanoparticles, and recent advances reported for in other nanostructures containing rare earths, such as metal organic frameworks and lanthanide complexes conjugated with biological structures, will also be commented on.European Union 267226Ministerio de Economía y Competitividad MAT2014-54852-
Incorporation of nio into sio2, tio2, al2o3, and na4.2ca2.8(si6o18) matrices: Medium effect on the optical properties and catalytic degradation of methylene blue
The medium effect of the optical and catalytic degradation of methylene blue was studied in the NiO/SiO2, NiO/TiO2, NiO/Al2O3, and NiO/Na4.2Ca2.8(Si6O18) composites, which were prepared by a solid-state method. The new composites were characterized by XRD (X-ray diffraction of powder), SEM/EDS, TEM, and HR-TEM. The size of the NiO nanoparticles obtained from the PSP-4-PVP (polyvinylpyrrolidone) precursors inside the different matrices follow the order of SiO2 > TiO2 > Al2O3 . However, NiO nanoparticles obtained from the chitosan precursor does not present an effect on the particle size. It was found that the medium effect of the matrices (SiO2, TiO2, Al2O3, and Na4.2Ca2.8(Si6O18)) on the photocatalytic methylene blue degradation, can be described as a specific interaction of the NiO material acting as a semiconductor with the MxOy materials through a possible p-n junction. The highest catalytic activity was found for the TiO2 and glass composites where a favorable p-n junction was formed. The isolating character of Al2O3 and SiO2 and their non-semiconductor behavior preclude this interaction to form a p-n junction, and thus a lower catalytic activity. NiO/SiO2 and NiO/Na4.2Ca2.8(Si6O18) showed a similar photocatalytic behavior. On the other hand, the effect of the matrix on the optical properties for the NiO/SiO2, NiO/TiO2, NiO/Al2O3, and NiO/Na4.2Ca2.8(Si6O18) composites can be described by the different dielectric constants of the SiO2, TiO2, Al2O3, Na4.2Ca2.8(Si6O18) matrices. The maxima absorption of the composites (¿max) exhibit a direct relationship with the dielectric constants, while their semiconductor bandgap (Eg) present an inverse relationship with the dielectric constants. A direct relationship between ¿max and Eg was found from these correlations. The effect of the polymer precursor on the particle size can explain some deviations from this relationship, as the correlation between the particle size and absorption is well known. Finally, the NiO/Na4.2Ca2.8(Si6O18) composite was reported in this work for the first time
Implementation of higher-order absorbing boundary conditions for the Einstein equations
We present an implementation of absorbing boundary conditions for the
Einstein equations based on the recent work of Buchman and Sarbach. In this
paper, we assume that spacetime may be linearized about Minkowski space close
to the outer boundary, which is taken to be a coordinate sphere. We reformulate
the boundary conditions as conditions on the gauge-invariant
Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated
by rewriting the boundary conditions as a system of ODEs for a set of auxiliary
variables intrinsic to the boundary. From these we construct boundary data for
a set of well-posed constraint-preserving boundary conditions for the Einstein
equations in a first-order generalized harmonic formulation. This construction
has direct applications to outer boundary conditions in simulations of isolated
systems (e.g., binary black holes) as well as to the problem of
Cauchy-perturbative matching. As a test problem for our numerical
implementation, we consider linearized multipolar gravitational waves in TT
gauge, with angular momentum numbers l=2 (Teukolsky waves), 3 and 4. We
demonstrate that the perfectly absorbing boundary condition B_L of order L=l
yields no spurious reflections to linear order in perturbation theory. This is
in contrast to the lower-order absorbing boundary conditions B_L with L<l,
which include the widely used freezing-Psi_0 boundary condition that imposes
the vanishing of the Newman-Penrose scalar Psi_0.Comment: 25 pages, 9 figures. Minor clarifications. Final version to appear in
Class. Quantum Grav
Processamento do queijo andino caprino maturado e defumado.
bitstream/CNPC-2010/23035/1/cot105.pdfPrática / Processo agropecuário
Europium-doped NaGd(WO4)2 nanophosphors: synthesis, luminescence and their coating with fluorescein for pH sensing
Uniform Eu-doped NaGd(WO4)2 nanophosphors with a spherical shape have been synthesized for the first time by using a wet chemistry method based on a homogeneous precipitation process at low temperature (120 °C) in ethylene glycol/water mixtures. The obtained nanoparticles crystallized into the tetragonal structure and presented polycrystalline character. The europium content in such phosphors has been optimized through the analysis of the luminescence dynamics (lifetime measurements). By coating the Eu3+-doped wolframate based nanoparticles with fluorescein through a layer-by-layer (LbL) approach, a wide range (4¿10) ratiometric pH-sensitive sensor has been developed, which uses the pH insensitive emission of Eu3+ as a reference.Ministerio de Economía y Competitividad MAT2014-54852-RConsejo Superior de Investigaciones Científicas CSIC PIE 201460E005, PIE 201560E056European Union 26722
Moving black holes via singularity excision
We present a singularity excision algorithm appropriate for numerical
simulations of black holes moving throughout the computational domain. The
method is an extension of the excision procedure previously used to obtain
stable simulations of single, non-moving black holes. The excision procedure
also shares elements used in recent work to study the dynamics of a scalarfield
in the background of a single, boosted black hole. The robustness of our
excision method is tested with single black-hole evolutions using a coordinate
system in which the coordinate location of the black hole, and thus the
excision boundary, moves throughout the computational domain.Comment: 9 pages and 11 figure
Coalhada caprina dessorada e adicionada de polpa de frutos tropicais.
bitstream/item/149865/1/CNPC-2010-Cot116.pd
- …