2,368 research outputs found

    Braking the Gas in the beta Pictoris Disk

    Full text link
    (Abridged) The main sequence star beta Pictoris hosts the best studied circumstellar disk to date. Nonetheless, a long-standing puzzle has been around since the detection of metallic gas in the disk: radiation pressure from the star should blow the gas away, yet the observed motion is consistent with Keplerian rotation. In this work we search for braking mechanisms that can resolve this discrepancy. We find that all species affected by radiation force are heavily ionized and dynamically coupled into a single fluid by Coulomb collisions, reducing the radiation force on species feeling the strongest acceleration. For a gas of solar composition, the resulting total radiation force still exceeds gravity, while a gas of enhanced carbon abundance could be self-braking. We also explore two other braking agents: collisions with dust grains and neutral gas. Grains surrounding beta Pic are photoelectrically charged to a positive electrostatic potential. If a significant fraction of the grains are carbonaceous (10% in the midplane and larger at higher altitudes), ions can be slowed down to satisfy the observed velocity constraints. For neutral gas to brake the coupled ion fluid, we find the minimum required mass to be \approx 0.03 M_\earth, consistent with observed upper limits of the hydrogen column density, and substantially reduced relative to previous estimates. Our results favor a scenario in which metallic gas is generated by grain evaporation in the disk, perhaps during grain-grain collisions. We exclude a primordial origin for the gas, but cannot rule out the possibility of its production by falling evaporating bodies near the star. We discuss the implications of this work for observations of gas in other debris disks.Comment: 19 pages, 12 figures, emulateapj. Accepted for publication in Ap

    Towards a covariant canonical formulation for closed topological defects without boundaries

    Get PDF
    On the basis of the covariant description of the canonical formalism for quantization, we present the basic elements of the symplectic geometry for a restricted class of topological defects propagating on a curved background spacetime. We discuss the future extensions of the present results.Comment: LaTeX, 12 pages, submitted to Phys. Lett. B. (2002

    Interpreting the photometry and spectroscopy of directly imaged planets: a new atmospheric model applied to beta Pictoris b and SPHERE observations

    Full text link
    We aim to interpret future photometric and spectral measurements from these instruments, in terms of physical parameters of the planets, with an atmospheric model using a minimal number of assumptions and parameters. We developed Exoplanet Radiative-convective Equilibrium Model (Exo-REM) to analyze the photometric and spectro- scopic data of directly imaged planets. The input parameters are a planet's surface gravity (g), effective temperature (Teff ), and elemental composition. The model predicts the equilibrium temperature profile and mixing ratio profiles of the most important gases. Opacity sources include the H2-He collision-induced absorption and molecular lines from eight compounds (including CH4 updated with the Exomol line list). Absorption by iron and silicate cloud particles is added above the expected condensation levels with a fixed scale height and a given optical depth at some reference wavelength. Scattering was not included at this stage. We applied Exo-REM to photometric and spectral observations of the planet beta Pictoris b obtained in a series of near-IR filters. We derived Teff = 1550 +- 150 K, log(g) = 3.5 +- 1, and radius R = 1.76 +- 0.24 RJup (2-{\sigma} error bars from photometric measurements). These values are comparable to those found in the literature, although with more conservative error bars, consistent with the model accuracy. We were able to reproduce, within error bars, the J- and H-band spectra of beta Pictoris b. We finally investigated the precision to which the above parameterComment: 15 pages, 14 figures, accepted by A&

    Tannin-Containing Legumes and Forage Diversity Influence Foraging Behavior, Diet Digestibility, and Nitrogen Excretion by Lambs

    Get PDF
    Diverse combinations of forages with different nutrient profiles and plant secondary compounds may improve intake and nutrient utilization by ruminants. We tested the influence of diverse dietary combinations of tannin- (sainfoin-Onobrichis viciifolia; birdsfoot trefoil-Lotus corniculatus) and non-tannin- (alfalfa-Medicago sativa L.) containing legumes on intake and diet digestibility in lambs. Freshly cut birdsfoot trefoil, alfalfa, and sainfoin were offered in ad libitum amounts to 42 lambs in individual pens assigned to 7 treatments (6 animals/treatment): 1) single forage species (sainfoin [SF], birdsfoot trefoil [BFT], and alfalfa [ALF]), 2) all possible 2-way choices of the 3 forage species (alfalfa-sainfoin [ALF-SF], alfalfa-birdsfoot trefoil [ALF-BFT], and sainfoin-birdsfoot trefoil [SF-BFT]), or 3) a choice of all 3 forages (alfalfa-sainfoin-birdsfoot trefoil [ALF-SF-BFT]). Dry matter intake (DMI) was greater in ALF than in BFT (P = 0.002), and DMI in SF tended to be greater than in BFT (P = 0.053). However, when alfalfa was offered in a choice with either of the tannin-containing legumes (ALF-SF; ALF-BFT), DMI did not differ from ALF, whereas DMI in SF-BFT did not differ from SF (P \u3e 0.10). When lambs were allowed to choose between 2 or 3 legume species, DMI was greater (36.6 vs. 33.2 g/kg BW; P = 0.038) or tended to be greater (37.4 vs. 33.2 g/kg BW; P = 0.067) than when lambs were fed single species, respectively. Intake did not differ between 2- or 3-way choice treatments (P = 0.723). Lambs preferred alfalfa over the tannin-containing legumes in a 70:30 ratio for 2-way choices, and alfalfa \u3e sainfoin \u3e birdsfoot trefoil in a 53:33:14 ratio for the 3-way choice. In vivo digestibility (DMD) was SF \u3e BFT (72.0% vs. 67.7%; P = 0.012) and DMD in BFT tended to be greater than in ALF (64.6%; P = 0.061). Nevertheless, when alfalfa was offered in a choice with either sainfoin or birdsfoot trefoil (ALF-SF; ALF-BFT), DMD was greater than ALF (P \u3c 0.001 and P = 0.007, respectively), suggesting positive associative effects. The SF treatment had lower blood urea nitrogen and greater fecal N/N intake ratios than the ALF, BFT, or ALF-BFT treatments (P \u3c 0.05), implying a shift in the site of N excretion from urine to feces. In conclusion, offering diverse combinations of legumes to sheep enhanced intake and diet digestibility relative to feeding single species, while allowing for the incorporation of beneficial bioactive compounds like condensed tannins into the diet

    Multiple spiral patterns in the transitional disk of HD 100546

    Get PDF
    Protoplanetary disks around young stars harbor many structures related to planetary formation. Of particular interest, spiral patterns were discovered among several of these disks and are expected to be the sign of gravitational instabilities leading to giant planets formation or gravitational perturbations caused by already existing planets. In this context, the star HD100546 presents some specific characteristics with a complex gas and dusty disk including spirals as well as a possible planet in formation. The objective of this study is to analyze high contrast and high angular resolution images of this emblematic system to shed light on critical steps of the planet formation. We retrieved archival images obtained at Gemini in the near IR (Ks band) with the instrument NICI and processed the data using advanced high contrast imaging technique taking advantage of the angular differential imaging. These new images reveal the spiral pattern previously identified with HST with an unprecedented resolution, while the large-scale structure of the disk is mostly erased by the data processing. The single pattern at the southeast in HST images is now resolved into a multi-armed spiral pattern. Using two models of a gravitational perturber orbiting in a gaseous disk we attempted to bring constraints on the characteristics of this perturber assuming each spiral being independent and we derived qualitative conclusions. The non-detection of the northeast spiral pattern observed in HST allows to put a lower limit on the intensity ratio between the two sides of the disk, which if interpreted as forward scattering yields a larger anisotropic scattering than derived in the visible. Also, we found that the spirals are likely spatially resolved with a thickness of about 5-10AU. Finally, we did not detect the candidate forming planet recently discovered in the Lp band, with a mass upper limit of 16-18 MJ.Comment: Accepted for publication in Astronomy and Astrophysics, 10 pages, 8 figure

    Understanding amorphous phase-change materials from the viewpoint of Maxwell rigidity

    Full text link
    Phase-change materials (PCMs) are the subject of considerable interest because they have been recognized as potential active layers for next-generation non-volatile memory devices, known as Phase Change Random Access Memories (PRAMs). By analyzing First Principles Molecular Dynamics simulations we develop a new method for the enumeration of mechanical constraints in the amorphous phase and show that the phase diagram of the most popular system (Ge-Sb-Te) can be split into two compositional regions having a well-defined mechanical character: a Tellurium rich flexible phase, and a stressed rigid phase that encompasses the known PCMs. This sound atomic scale insight should open new avenues for the understanding of PCMs and other complex amorphous materials from the viewpoint of rigidity.Comment: 5 pages, 4 figures in EP
    corecore