187 research outputs found

    Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers.

    Get PDF
    Clinical and neuropathological characteristics associated with G4C2 repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, are highly variable. To gain insight on the molecular basis for the heterogeneity among C9ORF72 mutation carriers, we evaluated associations between features of disease and levels of two abundantly expressed "c9RAN proteins" produced by repeat-associated non-ATG (RAN) translation of the expanded repeat. For these studies, we took a departure from traditional immunohistochemical approaches and instead employed immunoassays to quantitatively measure poly(GP) and poly(GA) levels in cerebellum, frontal cortex, motor cortex, and/or hippocampus from 55 C9ORF72 mutation carriers [12 patients with ALS, 24 with frontotemporal lobar degeneration (FTLD) and 19 with FTLD with motor neuron disease (FTLD-MND)]. We additionally investigated associations between levels of poly(GP) or poly(GA) and cognitive impairment in 15 C9ORF72 ALS patients for whom neuropsychological data were available. Among the neuroanatomical regions investigated, poly(GP) levels were highest in the cerebellum. In this same region, associations between poly(GP) and both neuropathological and clinical features were detected. Specifically, cerebellar poly(GP) levels were significantly lower in patients with ALS compared to patients with FTLD or FTLD-MND. Furthermore, cerebellar poly(GP) associated with cognitive score in our cohort of 15 patients. In the cerebellum, poly(GA) levels similarly trended lower in the ALS subgroup compared to FTLD or FTLD-MND subgroups, but no association between cerebellar poly(GA) and cognitive score was detected. Both cerebellar poly(GP) and poly(GA) associated with C9ORF72 variant 3 mRNA expression, but not variant 1 expression, repeat size, disease onset, or survival after onset. Overall, these data indicate that cerebellar abnormalities, as evidenced by poly(GP) accumulation, associate with neuropathological and clinical phenotypes, in particular cognitive impairment, of C9ORF72 mutation carriers

    Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.

    Get PDF
    The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation

    Ageing and gastrointestinal sensory function: Altered colonic mechanosensory and chemosensory function in the aged mouse

    Get PDF
    Ageing has a profound effect upon gastrointestinal function through mechanisms that are poorly understood. Here we investigated the effect of age upon gastrointestinal sensory signalling pathways in order to address the mechanisms underlying these changes. In vitro mouse colonic and jejunal preparations with attached splanchnic and mesenteric nerves were used to study mechanosensory and chemosensory afferent function in 3-, 12- and 24-month-old C57BL/6 animals. Quantitative RT-PCR was used to investigate mRNA expression in colonic tissue and dorsal root ganglion (DRG) cells isolated from 3- and 24-month animals, and immunohistochemistry was used to quantify the number of 5-HT-expressing enterochromaffin (EC) cells. Colonic and jejunal afferent mechanosensory function was attenuated with age and these effects appeared earlier in the colon compared to the jejunum. Colonic age-related loss of mechanosensory function was more pronounced in high-threshold afferents compared to low-threshold afferents. Chemosensory function was attenuated in the 24-month colon, affecting TRPV1 and serotonergic signalling pathways. High-threshold mechanosensory afferent fibres and small-diameter DRG neurons possessed lower functional TRPV1 receptor responses, which occurred without a change in TRPV1 mRNA expression. Serotonergic signalling was attenuated at 24 months, but TPH1 and TPH2 mRNA expression was elevated in colonic tissue. In conclusion, we saw an age-associated decrease in afferent mechanosensitivity in the mouse colon affecting HT units. These units have the capacity to sensitise in response to injurious events, and their loss in ageing may predispose the elderly to lower awareness of GI injury or disease

    TDP-43-Mediated Neuron Loss In Vivo Requires RNA-Binding Activity

    Get PDF
    Alteration and/or mutations of the ribonucleoprotein TDP-43 have been firmly linked to human neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The relative impacts of TDP-43 alteration, mutation, or inherent protein function on neural integrity, however, remain less clear—a situation confounded by conflicting reports based on transient and/or random-insertion transgenic expression. We therefore performed a stringent comparative investigation of impacts of these TDP-43 modifications on neural integrity in vivo. To achieve this, we systematically screened ALS/FTLD-associated and synthetic TDP-43 isoforms via same-site gene insertion and neural expression in Drosophila; followed by transposon-based motor neuron-specific transgenesis in a chick vertebrate system. Using this bi-systemic approach we uncovered a requirement of inherent TDP-43 RNA-binding function—but not ALS/FTLD-linked mutation, mislocalization, or truncation—for TDP-43-mediated neurotoxicity in vivo

    Tennis grunts communicate acoustic cues to sex and contest outcome

    Get PDF
    Despite their ubiquity in human behaviour, the communicative functions of nonverbal vocalisations remain poorly understood. Here, we analysed the acoustic structure of tennis grunts, nonverbal vocalisations produced in a competitive context. We predicted that tennis grunts convey information about vocalizer and context, similar to nonhuman vocal displays. Specifically, we tested whether the fundamental frequency (F0) of tennis grunts conveys static cues to a player’s sex, height, weight, and age, and covaries dynamically with tennis shot type (a proxy of body posture) and the progress and outcome of male and female professional tennis contests. We also performed playback experiments (using natural and resynthesised stimuli) to assess the perceptual relevance of tennis grunts. The F0 of tennis grunts predicted player sex, but not age or body size. Serve grunts had higher F0 than forehand and backhand grunts, grunts produced later in contests had higher F0 than those produced earlier, and grunts produced during contests that players won had a lower F0 than those produced during lost contests. This difference in F0 between losses and wins emerged early in matches, and did not change in magnitude as the match progressed, suggesting a possible role of physiological and/or psychological factors manifesting early or even before matches. Playbacks revealed that listeners use grunt F0 to infer sex and contest outcome. These findings indicate that tennis grunts communicate information about both vocalizer and contest, consistent with nonhuman mammal vocalisations

    Neither Replication nor Simulation Supports a Role for the Axon Guidance Pathway in the Genetics of Parkinson's Disease

    Get PDF
    Susceptibility to sporadic Parkinson's disease (PD) is thought to be influenced by both genetic and environmental factors and their interaction with each other. Statistical models including multiple variants in axon guidance pathway genes have recently been purported to be capable of predicting PD risk, survival free of the disease and age at disease onset; however the specific models have not undergone independent validation. Here we tested the best proposed risk panel of 23 single nucleotide polymorphisms (SNPs) in two PD sample sets, with a total of 525 cases and 518 controls. By single marker analysis, only one marker was significantly associated with PD risk in one of our sample sets (rs6692804: P = 0.03). Multi-marker analysis using the reported model found a mild association in one sample set (two sided P = 0.049, odds ratio for each score change = 1.07) but no significance in the other (two sided P = 0.98, odds ratio = 1), a stark contrast to the reported strong association with PD risk (P = 4.64×10−38, odds ratio as high as 90.8). Following a procedure similar to that used to build the reported model, simulated multi-marker models containing SNPs from randomly chosen genes in a genome wide PD dataset produced P-values that were highly significant and indistinguishable from similar models where disease status was permuted (3.13×10−23 to 4.90×10−64), demonstrating the potential for overfitting in the model building process. Together, these results challenge the robustness of the reported panel of genetic markers to predict PD risk in particular and a role of the axon guidance pathway in PD genetics in general

    Clinical utility of plasma Aβ42/40 ratio by LC-MS/MS in Alzheimer’s disease assessment

    Get PDF
    IntroductionPlasma Aβ42/40 ratio can help predict amyloid PET status, but its clinical utility in Alzheimer’s disease (AD) assessment is unclear.MethodsAβ42/40 ratio was measured by LC-MS/MS for 250 specimens with associated amyloid PET imaging, diagnosis, and demographic data, and for 6,192 consecutive clinical specimens submitted for Aβ42/40 testing.ResultsHigh diagnostic sensitivity and negative predictive value (NPV) for Aβ-PET positivity were observed, consistent with the clinical performance of other plasma LC-MS/MS assays, but with greater separation between Aβ42/40 values for individuals with positive vs. negative Aβ-PET results. Assuming a moderate prevalence of Aβ-PET positivity, a cutpoint was identified with 99% NPV, which could help predict that AD is likely not the cause of patients’ cognitive impairment and help reduce PET evaluation by about 40%.ConclusionHigh-throughput plasma Aβ42/40 LC-MS/MS assays can help identify patients with low likelihood of AD pathology, which can reduce PET evaluations, allowing for cost savings

    Encoding Odorant Identity by Spiking Packets of Rate-Invariant Neurons in Awake Mice

    Get PDF
    Background: How do neural networks encode sensory information? Following sensory stimulation, neural coding is commonly assumed to be based on neurons changing their firing rate. In contrast, both theoretical works and experiments in several sensory systems showed that neurons could encode information as coordinated cell assemblies by adjusting their spike timing and without changing their firing rate. Nevertheless, in the olfactory system, there is little experimental evidence supporting such model. Methodology/Principal Findings: To study these issues, we implanted tetrodes in the olfactory bulb of awake mice to record the odorant-evoked activity of mitral/tufted (M/T) cells. We showed that following odorant presentation, most M/T neurons do not significantly change their firing rate over a breathing cycle but rather respond to odorant stimulation by redistributing their firing activity within respiratory cycles. In addition, we showed that sensory information can be encoded by cell assemblies composed of such neurons, thus supporting the idea that coordinated populations of globally rateinvariant neurons could be efficiently used to convey information about the odorant identity. We showed that different coding schemes can convey high amount of odorant information for specific read-out time window. Finally we showed that the optimal readout time window corresponds to the duration of gamma oscillations cycles. Conclusion: We propose that odorant can be encoded by population of cells that exhibit fine temporal tuning of spiking activity while displaying weak or no firing rate change. These cell assemblies may transfer sensory information in spikin

    Characterization of FUS Mutations in Amyotrophic Lateral Sclerosis Using RNA-Seq

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease resulting in severe muscle weakness and eventual death by respiratory failure. Although little is known about its pathogenesis, mutations in fused in sarcoma/translated in liposarcoma (FUS) are causative for familial ALS. FUS is a multifunctional protein that is involved in many aspects of RNA processing. To elucidate the role of FUS in ALS, we overexpressed wild-type and two mutant forms of FUS in HEK-293T cells, as well as knocked-down FUS expression. This was followed by RNA-Seq to identify genes which displayed differential expression or altered splicing patterns. Pathway analysis revealed that overexpression of wild-type FUS regulates ribosomal genes, whereas knock-down of FUS additionally affects expression of spliceosome related genes. Furthermore, cells expressing mutant FUS displayed global transcription patterns more similar to cells overexpressing wild-type FUS than to the knock-down condition. This observation suggests that FUS mutants do not contribute to the pathogenesis of ALS through a loss-of-function. Finally, our results demonstrate that the R521G and R522G mutations display differences in their influence on transcription and splicing. Taken together, these results provide additional insights into the function of FUS and how mutations contribute to the development of ALS.ALS Foundation NetherlandsAdessium FoundationSeventh Framework Programme (European Commission) (grant number 259867)Thierry Latran FoundationNational Institutes of Health (U.S.) (NIH/NINDS grant R01NS073873)National Institute of Neurological Disorders and Stroke (U.S.) (NIH/NINDS grant numbers 1R01NS065847
    • …
    corecore