43 research outputs found

    Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging

    Get PDF
    Over the years, biological imaging has seen many advances, allowing scientists to unfold many of the mysteries surrounding biological processes. The ideal imaging resolution would be in nanometres, as most biological processes occur at this scale. Nanotechnology has made this possible with functionalised nanoparticles that can bind to specific targets and trace processes at the cellular and molecular level. Quantum dots (QDs) or semiconductor nanocrystals are luminescent particles that have the potential to be the next generation fluorophores. This paper is an overview of the basics of QDs and their role as fluorescent probes for various biological imaging applications. Their potential clinical applications and the limitations that need to be overcome have also been discussed

    Lipoproteins act as vehicles for lipid antigen delivery and activation of invariant natural killer T cells

    Get PDF
    Invariant natural killer T (iNKT) cells act at the interface between lipid metabolism and immunity because of their restriction to lipid antigens presented on CD1d by antigen-presenting cells (APCs). How foreign lipid antigens are delivered to APCs remains elusive. Since lipoproteins routinely bind glycosylceramides structurally similar to lipid antigens, we hypothesized that circulating lipoproteins form complexes with foreign lipid antigens. In this study, we used 2-color fluorescence correlation spectroscopy to show, for the first time to our knowledge, stable complex formation of lipid antigens α-galactosylceramide (αGalCer), isoglobotrihexosylceramide, and OCH, a sphingosine-truncated analog of αGalCer, with VLDL and/or LDL in vitro and in vivo. We demonstrate LDL receptor-mediated (LDLR-mediated) uptake of lipoprotein-αGalCer complexes by APCs, leading to potent complex-mediated activation of iNKT cells in vitro and in vivo. Finally, LDLR-mutant PBMCs of patients with familial hypercholesterolemia showed impaired activation and proliferation of iNKT cells upon stimulation, underscoring the relevance of lipoproteins as a lipid antigen delivery system in humans. Taken together, circulating lipoproteins form complexes with lipid antigens to facilitate their transport and uptake by APCs, leading to enhanced iNKT cell activation. This study thereby reveals a potentially novel mechanism of lipid antigen delivery to APCs and provides further insight into the immunological capacities of circulating lipoproteins

    FOXN1 forms higher-order nuclear condensates displaced by mutations causing immunodeficiency

    Get PDF
    The transcription factor FOXN1 is a master regulator of thymic epithelial cell (TEC) development and function. Here, we demonstrate that FOXN1 expression is differentially regulated during organogenesis and participates in multimolecular nuclear condensates essential for the factor’s transcriptional activity. FOXN1’s C-terminal sequence regulates the diffusion velocity within these aggregates and modulates the binding to proximal gene regulatory regions. These dynamics are altered in a patient with a mutant FOXN1 that is modified in its C-terminal sequence. This mutant is transcriptionally inactive and acts as a dominant negative factor displacing wild-type FOXN1 from condensates and causing athymia and severe lymphopenia in heterozygotes. Expression of the mutated mouse ortholog selectively impairs mouse TEC differentiation, revealing a gene dose dependency for individual TEC subtypes. We have therefore identified the cause for a primary immunodeficiency disease and determined the mechanism by which this FOXN1 gain-of-function mutant mediates its dominant negative effect

    Cold Induces Micro- and Nano-Scale Reorganization of Lipid Raft Markers at Mounds of T-Cell Membrane Fluctuations

    Get PDF
    Whether and how cold causes changes in cell-membrane or lipid rafts remain poorly characterized. Using the NSOM/QD and confocal imaging systems, we found that cold caused microscale redistribution of lipid raft markers, GM1 for lipid and CD59 for protein, from the peripheral part of microdomains to the central part on Jurkat T cells, and that cold also induced the nanoscale size-enlargement (1/3- to 2/3-fold) of the nanoclusters of lipid raft markers and even the colocalization of GM1 and CD59 nanoclusters. These findings indicate cold-induced lateral rearrangement/coalescence of raft-related membrane heterogeneity. The cold-induced re-distribution of lipid raft markers under a nearly-natural condition provide clues for their alternations, and help to propose a model in which raft lipids associate themselves or interact with protein components to generate functional membrane heterogeneity in response to stimulus. The data also underscore the possible cold-induced artifacts in early-described cold-related experiments and the detergent-resistance-based analyses of lipid rafts at 4°C, and provide a biophysical explanation for recently-reported cold-induced activation of signaling pathways in T cells. Importantly, our fluorescence-topographic NSOM imaging demonstrated that GM1/CD59 raft markers distributed and re-distributed at mounds but not depressions of T-cell membrane fluctuations. Such mound-top distribution of lipid raft markers or lipid rafts provides spatial advantage for lipid rafts or contact molecules interacting readily with neighboring cells or free molecules

    Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking

    Get PDF
    In this work we discuss how to use photophysical information for improved quantitative measurements using Photo Activated Localization Microscopy (PALM) imaging. We introduce a method that reliably estimates the number of photoblinking molecules present in a biological sample and gives a robust way to quantify proteins at the single-cell level from PALM images. We apply this method to determine the amount of β2 adrenergic receptor, a prototypical G Protein Coupled Receptor, expressed on the plasma membrane of HeLa cells

    The lateral organization and mobility of plasma membrane components

    No full text
    The local, dynamic structure of the cell surface, which incorporates the lateral distribution and movement of components in the plasma membrane, shapes the outcome of diverse cell behaviors, including signal transduction, endo- and exocytosis, and cell motility

    The Lateral Organization and Mobility of Plasma Membrane Components

    No full text
    The local, dynamic structure of the cell surface, which incorporates the lateral distribution and movement of components in the plasma membrane, shapes the outcome of diverse cell behaviors, including signal transduction, endo- and exocytosis, and cell motility

    Dendritic cell entry to lymphatic capillaries is orchestrated by CD44 and the hyaluronan glycocalyx

    No full text
    DCs play a vital role in immunity by conveying antigens from peripheral tissues to draining lymph nodes, through afferent lymphatic vessels. Critical to the process is initial docking to the lymphatic endothelial receptor LYVE-1 via its ligand hyaluronan on the DC surface. How this relatively weak binding polymer is configured for specific adhesion to LYVE-1, however, is unknown. Here, we show that hyaluronan is anchored and spatially organized into a 400–500 nm dense glycocalyx by the leukocyte receptor CD44. Using gene knockout and by modulating CD44-hyaluronan interactions with monoclonal antibodies in vitro and in a mouse model of oxazolone-induced skin inflammation, we demonstrate that CD44 is required for DC adhesion and transmigration across lymphatic endothelium. In addition, we present evidence that CD44 can dynamically control the density of the hyaluronan glycocalyx, regulating the efficiency of DC trafficking to lymph nodes. Our findings define a previously unrecognized role for CD44 in lymphatic trafficking and highlight the importance of the CD44:HA:LYVE-1 axis in its regulation
    corecore