4,912 research outputs found
Thermohaline instability and rotation-induced mixing II- Yields of 3He for low- and intermediate-mass stars
Context. The 3He content of Galactic HII regions is very close to that of the
Sun and the solar system, and only slightly higher than the primordial 3He
abundance as predicted by the standard Big Bang nucleosynthesis. However, the
classical theory of stellar evolution predicts a high production of 3He by
low-mass stars, implying a strong increase of 3He with time in the Galaxy. This
is the well-known "3He problem". Aims. We study the effects of thermohaline and
rotation-induced mixings on the production and destruction of 3He over the
lifetime of low- and intermediate-mass stars at various metallicities. Methods.
We compute stellar evolutionary models in the mass range 1 to 6M\odot for four
metallicities, taking into account thermohaline instability and
rotation-induced mixing. For the thermohaline diffusivity we use the
prescription based on the linear stability analysis, which reproduces Red Giant
Branch (RGB) abundance patterns at all metallicities. Rotation-induced mixing
is treated taking into account meridional circulation and shear turbulence. We
discuss the effects of these processes on internal and surface abundances of
3He and on the net yields. Results. Over the whole mass and metallicity range
investigated, rotation-induced mixing lowers the 3He production, as well as the
upper mass limit at which stars destroy 3He. For low-mass stars, thermohaline
mixing occuring beyond the RGB bump is the dominant process in strongly
reducing the net 3He yield compared to standard computations. Yet these stars
remain net 3He producers. Conclusions. Overall, the net 3He yields are strongly
reduced compared to the standard framework predictions
Beryllium abundances along the evolutionary sequence of the open cluster IC 4651 - New test for hydrodynamical stellar models
[abridged] Previous analyses of lithium abundances in main sequence and red
giant stars have revealed the action of mixing mechanisms other than convection
in stellar interiors. Beryllium abundances in stars with lithium abundance
determinations can offer valuable complementary information on the nature of
these mechanisms. Our aim is to derive beryllium abundances along the whole
evolutionary sequence of an open cluster, IC 4651. These Be abundances are used
together with previously determined Li abundances, in the same sample stars, to
investigate the mixing mechanisms in a range of stellar masses and evolutionary
stages. New beryllium abundances are determined from high-resolution, high
signal-to-noise UVES spectra using spectrum synthesis and model atmospheres.
The careful synthetic modelling of the Be lines region is used to calculate
reliable abundances in rapidly rotating stars. The observed behavior of Be and
Li is compared to theoretical predictions from stellar models including
rotation-induced mixing, internal gravity waves, atomic diffusion, and
thermohaline mixing. Beryllium is detected in all the main sequence and
turn-off sample stars, both slow- and fast-rotating stars, including the Li-dip
stars, but was not detected in the red giants. Confirming previous results, we
find that the Li dip is also a Be dip, although the depletion of Be is more
modest than that of Li in the corresponding effective temperature range. For
post-main-sequence stars, the Be dilution starts earlier within the Hertzsprung
gap than expected from classical predictions as does the Li dilution. A clear
dispersion in the Be abundances is also observed. Theoretical stellar models
including the hydrodynamical transport processes mentioned above are able to
reproduce well all the observed features.Comment: 12 pages, accepted for publication in A&A, revised final versio
XANES Study of Structural Disorder in Amorphous Silicon
An investigation of the structure of several amorphous silicon (a-Si) films is presented. Samples were prepared by using the ion beam sputtering technique at different substrate deposition temperatures. X-ray absorption spectroscopy and multiple scattering formalism have been used to detect structural variations of the a-Si films. The analysis of the XANES (X-ray absorption near-edge structure) spectra shows that increasing the substrate deposition temperature leads to a structural change toward a higher-level short-range order.
Spin and recombination dynamics of excitons and free electrons in p-type GaAs : effect of carrier density
Carrier and spin recombination are investigated in p-type GaAs of acceptor
concentration NA = 1.5 x 10^(17) cm^(-3) using time-resolved photoluminescence
spectroscopy at 15 K. At low pho- tocarrier concentration, acceptors are mostly
neutral and photoelectrons can either recombine with holes bound to acceptors
(e-A0 line) or form excitons which are mostly trapped on neutral acceptors
forming the (A0X) complex. It is found that the spin lifetime is shorter for
electrons that recombine through the e-A0 transition due to spin relaxation
generated by the exchange scattering of free electrons with either trapped or
free holes, whereas spin flip processes are less likely to occur once the
electron forms with a free hole an exciton bound to a neutral acceptor. An
increase of exci- tation power induces a cross-over to a regime where the
bimolecular band-to-band (b-b) emission becomes more favorable due to screening
of the electron-hole Coulomb interaction and ionization of excitonic complexes
and free excitons. Then, the formation of excitons is no longer possible, the
carrier recombination lifetime increases and the spin lifetime is found to
decrease dramatically with concentration due to fast spin relaxation with free
photoholes. In this high density regime, both the electrons that recombine
through the e-A0 transition and through the b-b transition have the same spin
relaxation time.Comment: 4 pages, 5 figure
Beryllium abundances along the evolutionary sequence of the open cluster IC 4651
The simultaneous investigation of Li and Be in stars is a powerful tool in the study of the evolutionary mixing processes. Here, we present beryllium abundances in stars along the whole evolutionary sequence of the open cluster IC 4651. This cluster has a metallicity of [Fe/H] = +0.11 and an age of 1.2 or 1.7 Gyr. Abundances have been determined from high-resolution, high signal-to-noise UVES spectra using spectrum synthesis and model atmospheres. Lithium abundances for the same stars were determined in a previous work. Confirming previous results, we find that the Li dip is also a Be dip. For post-main-sequence stars, the Be dilution starts earlier within the Hertzsprung gap than expected from classical predictions, as does the Li dilution. Theoretical hydrodynamical models are able to reproduce well all the observed feature
Carrier and polarization dynamics in monolayer MoS2
In monolayer MoS2 optical transitions across the direct bandgap are governed
by chiral selection rules, allowing optical valley initialization. In time
resolved photoluminescence (PL) experiments we find that both the polarization
and emission dynamics do not change from 4K to 300K within our time resolution.
We measure a high polarization and show that under pulsed excitation the
emission polarization significantly decreases with increasing laser power. We
find a fast exciton emission decay time on the order of 4ps. The absence of a
clear PL polarization decay within our time resolution suggests that the
initially injected polarization dominates the steady state PL polarization. The
observed decrease of the initial polarization with increasing pump photon
energy hints at a possible ultrafast intervalley relaxation beyond the
experimental ps time resolution. By compensating the temperature induced change
in bandgap energy with the excitation laser energy an emission polarization of
40% is recovered at 300K, close to the maximum emission polarization for this
sample at 4K.Comment: 7 pages, 7 figures including supplementary materia
Thermohaline instability and rotation-induced mixing. III - Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars at various metallicities
The availability of asteroseismic constraints for a large sample of stars
from the missions CoRoT and Kepler paves the way for various statistical
studies of the seismic properties of stellar populations. In this paper, we
evaluate the impact of rotation-induced mixing and thermohaline instability on
the global asteroseismic parameters at different stages of the stellar
evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic
Giant Branch to distinguish stellar populations. We present a grid of stellar
evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and
0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed
either with standard prescriptions or including both thermohaline convection
and rotation-induced mixing. For the whole grid we provide the usual stellar
parameters (luminosity, effective temperature, lifetimes, ...), together with
the global seismic parameters, i.e. the large frequency separation and
asymptotic relations, the frequency corresponding to the maximum oscillation
power {\nu}_{max}, the maximal amplitude A_{max}, the asymptotic period spacing
of g-modes, and different acoustic radii. We discuss the signature of
rotation-induced mixing on the global asteroseismic quantities, that can be
detected observationally. Thermohaline mixing whose effects can be identified
by spectroscopic studies cannot be caracterized with the global seismic
parameters studied here. But it is not excluded that individual mode
frequencies or other well chosen asteroseismic quantities might help
constraining this mixing.Comment: 15 pages, 11 figures, accepted for publication in A&
- …
