65 research outputs found

    Optical properties of tensilely strained Ge nanomembranes

    Get PDF
    Group-IV semiconductors, which provide the leading materials platform of micro- electronics, are generally unsuitable for light emitting device applications because of their indirect- bandgap nature. This property currently limits the large-scale integration of electronic and photonic functionalities on Si chips. The introduction of tensile strain in Ge, which has the effect of lowering the direct conduction-band minimum relative to the indirect valleys, is a promising approach to address this challenge. Here we review recent work focused on the basic science and technology of mechanically stressed Ge nanomembranes, i.e., single-crystal sheets with thicknesses of a few tens of nanometers, which can sustain particularly large strain levels before the onset of plastic deformation. These nanomaterials have been employed to demonstrate large strain-enhanced photoluminescence, population inversion under optical pumping, and the formation of direct-bandgap Ge. Furthermore, Si-based photonic-crystal cavities have been developed that can be combined with these Ge nanomembranes without limiting their mechanical flexibility. These results highlight the potential of strained Ge as a CMOS-compatible laser material, and more in general the promise of nanomembrane strain engineering for novel device technologies.The Ge nanomembrane fabrication and characterization efforts were supported initially by DOE under Grant DE-FG02-03ER46028, and subsequently by AFOSR under Grant FA9550-14-1-0361. The development of the photonic-crystal cavities was supported by NSF under Grant ECCS-1308534. The initial photoluminescence studies were funded by NSF under Grant DMR-0907296. The contribution from several students and research scientists involved in this research at Boston University and the University of Wisconsin-Madison (including Cicek Boztug, Francesca Cavallo, Feng Chen, Xiaorui Cui, RB Jacobson, Debbie Paskiewicz, Jose Sanchez-Perez, Pornsatit Sookchoo, Faisal Sudradjat, Xiaowei Wang, and Jian Yin) is also gratefully acknowledged. (DE-FG02-03ER46028 - DOE; FA9550-14-1-0361 - AFOSR; ECCS-1308534 - NSF; DMR-0907296 - NSF)Published versio

    Three-Omega Thermal-Conductivity Measurements with Curved Heater Geometries

    Full text link
    The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimensional materials and nanomembranes, residue and excess material can make it difficult to fit the required millimeter-long straight wire on the sample surface. There are currently no available criteria for how diverting three-omega heater wires around obstacles affects the validity of the thermal measurement. In this Letter, we quantify the effect of wire curvature by performing three-omega experiments with a wide range of frequencies using both curved and straight heater geometries on SiO2_2/Si samples. When the heating wire is curved, we find that the measured Si substrate thermal conductivity changes by only 0.2%. Similarly, we find that wire curvature has no significant effect on the determination of the thermal resistance of a \sim65 nm SiO2_2 layer, even for the sharpest corners considered here, for which the largest measured ratio of the thermal penetration depth of the applied thermal wave to radius of curvature of the heating wire is 4.3. This result provides useful design criteria for three-omega experiments by setting a lower bound for the maximum ratio of thermal penetration depth to wire radius of curvature.Comment: 4 pages, 3 figure

    Structure, Stability, and Origin of (2×n) Phases on Si(100)

    Get PDF
    Phases with (2×n) structure (6<n<10) can be formed on Si(100) by rapid quenching from high temperatures. The nominal (2×7) phase has been investigated by high-resolution low-energy electron diffraction. The structure involves two atomic levels, is metastable, and decays with first-order kinetics. The structure can be explained by ordering of excess missing-dimer defects, which apparently are present on the surface with any of the standard surface preparation techniques for Si(100)

    Translation and manipulation of silicon nanomembranes using holographic optical tweezers

    Get PDF
    We demonstrate the use of holographic optical tweezers for trapping and manipulating silicon nanomembranes. These macroscopic free-standing sheets of single-crystalline silicon are attractive for use in next-generation flexible electronics. We achieve three-dimensional control by attaching a functionalized silica bead to the silicon surface, enabling non-contact trapping and manipulation of planar structures with high aspect ratios (high lateral size to thickness). Using as few as one trap and trapping powers as low as several hundred milliwatts, silicon nanomembranes can be rotated and translated in a solution over large distances

    Long Phonon Mean Free Paths Observed in Cross-plane Thermal-Conductivity Measurements of Exfoliated Hexagonal Boron Nitride

    Full text link
    Sub-micron-thick layers of hexagonal boron nitride (hBN) exhibit high in-plane thermal conductivity, useful optical properties, and serve as dielectric encapsulation layers with low electrostatic inhomogeneity for graphene devices. Despite the promising applications of hBN as a heat spreader, the thickness dependence of the cross-plane thermal conductivity is not known, and the cross-plane phonon mean free paths in hBN have not been measured. We measure the cross-plane thermal conductivity of hBN flakes exfoliated from bulk crystals. We find that the thermal conductivity is extremely sensitive to film thickness. We measure a forty-fold increase in the cross-plane thermal conductivity between 7 nm and 585 nm flakes at 295 K. We attribute the large increase in thermal conductivity with increasing thickness to contributions from phonons with long mean free paths (MFPs), spanning many hundreds of nanometers in the thickest flakes. When planar twist interfaces are introduced into the crystal by mechanically stacking multiple thin flakes, the cross-plane thermal conductivity of the stack is found to be a factor of seven below that of individual flakes with similar total thickness, thus providing strong evidence that phonon scattering at twist boundaries limits the maximum phonon MFPs. These results have important implications for hBN integration in nanoelectronics and improve our understanding of thermal transport in two-dimensional materials.Comment: 4 pages, 3 figure

    Fabrication of ultrahigh-density nanowires by electrochemical nanolithography

    Get PDF
    An approach has been developed to produce silver nanoparticles (AgNPs) rapidly on semiconductor wafers using electrochemical deposition. The closely packed AgNPs have a density of up to 1.4 × 1011 cm-2 with good size uniformity. AgNPs retain their shape and position on the substrate when used as nanomasks for producing ultrahigh-density vertical nanowire arrays with controllable size, making it a one-step nanolithography technique. We demonstrate this method on Si/SiGe multilayer superlattices using electrochemical nanopatterning and plasma etching to obtain high-density Si/SiGe multilayer superlattice nanowires

    Influence of surface properties on the electrical conductivity of silicon nanomembranes

    Get PDF
    Because of the large surface-to-volume ratio, the conductivity of semiconductor nanostructures is very sensitive to surface chemical and structural conditions. Two surface modifications, vacuum hydrogenation (VH) and hydrofluoric acid (HF) cleaning, of silicon nanomembranes (SiNMs) that nominally have the same effect, the hydrogen termination of the surface, are compared. The sheet resistance of the SiNMs, measured by the van der Pauw method, shows that HF etching produces at least an order of magnitude larger drop in sheet resistance than that caused by VH treatment, relative to the very high sheet resistance of samples terminated with native oxide. Re-oxidation rates after these treatments also differ. X-ray photoelectron spectroscopy measurements are consistent with the electrical-conductivity results. We pinpoint the likely cause of the differences

    Atomic steps on Si(100) surfaces

    Get PDF
    It is demonstrated that surface-sensitive electron diffraction measurements of steps on singular, but rough Si(100) surfaces are subject to a multiple-scattering effect that can be misinterpreted as double-atomic-height steps. It is shown that only single-height steps are present. This phenomenon can occur in any surface in which adjacent terraces have different terrace structure factors. Determination of terrace sizes can be influenced; however, they can be accurately made if the diffraction geometry is chosen appropriately. Possible terrace shape effects may also be inherent in the diffraction data
    corecore