1,142 research outputs found

    The Directly Imaged Planet around the Young Solar Analog 1RXS J160929.1-210524: Confirmation of Common Proper Motion, Temperature and Mass

    Full text link
    Giant planets are usually thought to form within a few tens of AU of their host stars, and hence it came as a surprise when we found what appeared to be a planetary mass (~0.008 Msun) companion around the 5 Myr-old solar mass star 1RXS J160929.1-210524 in the Upper Scorpius association. At the time, we took the object's membership in Upper Scorpius -- established from near-infrared, H- and K-band spectroscopy -- and its proximity (2.2", or 330 AU) to the primary as strong evidence for companionship, but could not verify their common proper motion. Here, we present follow-up astrometric measurements that confirm that the companion is indeed co-moving with the primary star, which we interpret as evidence that it is a truly bound planetary mass companion. We also present new J-band spectroscopy and 3.0-3.8 microns photometry of the companion. Based on a comparison with model spectra, these new measurements are consistent with the previous estimate of the companion effective temperature of 1800+/-200 K. We present a new estimate of the companion mass based on evolution models and the calculated bolometric luminosity of the companion; we obtain a value of 0.008 (-0.002/+0.003) Msun, again consistent with our previous result. Finally, we present angular differential imaging observations of the system allowing us to rule out additional planets in the system more massive than 1, 2 and 8 Mjup at projected separations larger than 3" (~440 AU), 0.7" (~100 AU) and 0.35" (~50 AU), respectively. This companion is the least massive known to date at such a large orbital distance; it shows that objects in the planetary mass range exist at orbital separations of several hundred AU, posing a serious challenge for current formation models.Comment: Published in ApJ, 8 pages in emulateapj forma

    New Brown Dwarf Companions to Young Stars in Scorpius-Centaurus

    Full text link
    We present the discoveries of three faint companions to young stars in the Scorpius-Centaurus region, imaged with the NICI instrument on Gemini South. We have confirmed all three companions through common proper motion tests. Follow-up spectroscopy has confirmed two of them, HIP 65423 B and HIP 65517 B, to be brown dwarfs, while the third, HIP 72099 B, is more likely a very low-mass star just above the hydrogen burning limit. The detection of wide companions in the mass range of ~40--100 Mjup complements previous work in the same region, reporting detections of similarly wide companions with lower masses, in the range of ~10--30 Mjup. Such low masses near the deuterium burning limit have raised the question of whether those objects formed like planets or stars. The existence of intermediate objects as reported here could represent a bridge between lower-mass companions and stellar companions, but in any case demonstrate that mass alone may not provide a clear-cut distinction for the formation of low-mass companions to stars.Comment: 9 pages, 5 figures, accepted for publication in ApJ

    Piercing the Glare: Direct Imaging Search for Planets in the Sirius System

    Get PDF
    Astrometric monitoring of the Sirius binary system over the past century has yielded several predictions for an unseen third system component, the most recent one suggesting a \leq50 MJup object in a ~6.3-year orbit around Sirius A. Here we present two epochs of high-contrast imaging observations performed with Subaru IRCS and AO188 in the 4.05 \mum narrow-band Br alpha filter. These data surpass previous observations by an order of magnitude in detectable companion mass, allowing us to probe the relevant separation range down to the planetary mass regime (6-12 M_Jup at 1", 2-4 M_Jup at 2", and 1.6 M_Jup beyond 4"). We complement these data with one epoch of M-band observations from MMT/AO Clio, which reach comparable performance. No dataset reveals any companion candidates above the 5-sigma level, allowing us to refute the existence of Sirius C as suggested by the previous astrometric analysis. Furthermore, our Br alpha photometry of Sirius B confirms the lack of an infrared excess beyond the white dwarf's blackbody spectrum.Comment: 6 pages, 5 figures, accepted for publication in ApJ Letter

    An attachment theory perspective in the examination of relational processes associated with coach-athlete dyads

    Get PDF
    The aim of the current study was to examine actor and partner effects of (a) athletes' and coaches' attachment styles (avoidant and anxious) on the quality of the coach-athlete relationship, and (b) athletes' and coaches' quality of the coach-athlete relationship on relationship satisfaction employing the actor-partner interdependence model (Kenny, Kashy, & Cook, 2006). Coaches (N = 107) and athletes (N = 107) completed a questionnaire related to attachment styles, relationship quality, and relationship satisfaction. Structural equation model analyses revealed (a) actor effects for coaches' and athletes' avoidant attachment styles on their own perception of relationship quality and coaches' and athletes' perception of relationship quality on their own perception of relationship satisfaction, and (b) partner effects for athletes' avoidant attachment style on coaches' perceptions of relationship quality and for coaches' perceptions of relationship quality on athletes' perceptions of relationship satisfaction. The findings highlight that attachments styles can help us understand the processes involved in the formation and maintenance of quality relational bonds between coaches and athletes

    The Gemini NICI Planet-Finding Campaign: Discovery of a Close Substellar Companion to the Young Debris Disk Star PZ Tel

    Full text link
    We report the discovery of a tight substellar companion to the young solar analog PZ Tel, a member of the Beta Pictoris moving group observed with high contrast adaptive optics imaging as part of the Gemini NICI Planet-Finding Campaign. The companion was detected at a projected separation of 16.4 +/- 1.0 AU (0.33 +/- 0.01") in April 2009. Second-epoch observations in May 2010 demonstrate that the companion is physically associated and shows significant orbital motion. Monte Carlo modeling constrains the orbit of PZ Tel B to eccentricities > 0.6. The near-IR colors of PZ Tel B indicate a spectral type of M7+/-2 and thus this object will be a new benchmark companion for studies of ultracool, low-gravity photospheres. Adopting an age of 12 +8 -4 Myr for the system, we estimate a mass of 36 +/- 6 Mjup based on the Lyon/DUSTY evolutionary models. PZ Tel B is one of few young substellar companions directly imaged at orbital separations similar to those of giant planets in our own solar system. Additionally, the primary star PZ Tel A shows a 70 um emission excess, evidence for a significant quantity of circumstellar dust that has not been disrupted by the orbital motion of the companion.Comment: 15 pages, 4 figures, to appear in ApJ Letter

    How do Most Planets Form? -- Constraints on Disk Instability from Direct Imaging

    Full text link
    Core accretion and disk instability have traditionally been regarded as the two competing possible paths of planet formation. In recent years, evidence have accumulated in favor of core accretion as the dominant mode, at least for close-in planets. However, it might be hypothesized that a significant population of wide planets formed by disk instabilities could exist at large separations, forming an invisible majority. In previous work, we addressed this issue through a direct imaging survey of B2--A0-type stars, and concluded that <30% of such stars form and retain planets and brown dwarfs through disk instability, leaving core accretion as the likely dominant mechanism. In this paper, we extend this analysis to FGKM-type stars by applying a similar analysis to the Gemini Deep Planet Survey (GDPS) sample. The results strengthen the conclusion that substellar companions formed and retained around their parent stars by disk instabilities are rare. Specifically, we find that the frequency of such companions is <8% for FGKM-type stars under our most conservative assumptions, for an outer disk radius of 300 AU, at 99% confidence. Furthermore, we find that the frequency is always <10% at 99% confidence independently of outer disk radius, for any radius from 5 to 500 AU. We also simulate migration at a wide range of rates, and find that the conclusions hold even if the companions move substantially after formation. Hence, core accretion remains the likely dominant formation mechanism for the total planet population, for every type of star from M-type through B-type.Comment: 10 pages, 4 figures, accepted for publication in Ap

    HST/NICMOS detection of HR 8799 b in 1998

    Full text link
    Three planets have been directly imaged around the young star HR 8799. The planets are 5-13 Mjup and orbit the star at projected separations of 24-68 AU. While the initial detection occurred in 2007, two of the planets were recovered in a re-analysis of data obtained in 2004. Here we present a detection of the furthest planet of that system, HR 8799 b, in archival HST/NICMOS data from 1998. The detection was made using the locally-optimized combination of images algorithm to construct, from a large set of HST/NICMOS images of different stars taken from the archive, an optimized reference point-spread function image used to subtract the light of the primary star from the images of HR 8799. This new approach improves the sensitivity to planets at small separations by a factor of ~10 compared to traditional roll deconvolution. The new detection provides an astrometry point 10 years before the most recent observations, and is consistent with a Keplerian circular orbit with a~70 AU and low orbital inclination. The new photometry point, in the F160W filter, is in good agreement with an atmosphere model with intermediate clouds and vertical stratification, and thus suggests the presence of significant water absorption in the planet's atmosphere. The success of the new approach used here highlights a path for the search and characterization of exoplanets with future space telescopes, such as the James Webb Space Telescope or a Terrestrial Planet Finder.Comment: ApJL, in pres

    Near Infrared Observations of GQ Lup b Using the Gemini Integral Field Spectrograph NIFS

    Full text link
    We present new JHK spectroscopy (R ~ 5000) of GQ Lup b, acquired with the near-infrared integral field spectrograph NIFS and the adaptive optics system ALTAIR at the Gemini North telescope. Angular differential imaging was used in the J and H bands to suppress the speckle noise from GQ Lup A; we show that this approach can provide improvements in signal-to-noise ratio (S/N) by a factor of 2 - 6 for companions located at subarcsecond separations. Based on high quality observations and GAIA synthetic spectra, we estimate the companion effective temperature to Teff = 2400 +/- 100 K, its gravity to log g = 4.0 +/- 0.5, and its luminosity to log(L/L_s) = -2.47 +/- 0.28. Comparisons with the predictions of the DUSTY evolutionary tracks allow us to constrain the mass of GQ Lup b to 8 - 60 MJup, most likely in the brown dwarf regime. Compared with the spectra published by Seifahrt and collaborators, our spectra of GQ Lup b are significantly redder (by 15 - 50%) and do not show important Pa\beta emission. Our spectra are in excellent agreement with the lower S/N spectra previously published by McElwain and collaborators.Comment: 34 pages, 10 figures, accepted for publication in Ap

    Directly Imaging Tidally Powered Migrating Jupiters

    Full text link
    Upcoming direct-imaging experiments may detect a new class of long-period, highly luminous, tidally powered extrasolar gas giants. Even though they are hosted by ~ Gyr-"old" main-sequence stars, they can be as "hot" as young Jupiters at ~100 Myr, the prime targets of direct-imaging surveys. They are on years-long orbits and presently migrating to "feed" the "hot Jupiters." They are expected from "high-e" migration mechanisms, in which Jupiters are excited to highly eccentric orbits and then shrink semi-major axis by a factor of ~10-100 due to tidal dissipation at close periastron passages. The dissipated orbital energy is converted to heat, and if it is deposited deep enough into the atmosphere, the planet likely radiates steadily at luminosity L ~ 100-1000 L_Jup(2 x 10-7-2 x 10-6 L_Sun) during a typical ~ Gyr migration timescale. Their large orbital separations and expected high planet-to-star flux ratios in IR make them potentially accessible to high-contrast imaging instruments on 10 m class telescopes. ~10 such planets are expected to exist around FGK dwarfs within ~50 pc. Long-period radial velocity planets are viable candidates, and the highly eccentric planet HD 20782b at maximum angular separation ~0.''08 is a promising candidate. Directly imaging these tidally powered Jupiters would enable a direct test of high-e migration mechanisms. Once detected, the luminosity would provide a direct measurement of the migration rate, and together with mass (and possibly radius) estimate, they would serve as a laboratory to study planetary spectral formation and tidal physics.Comment: Updated to match the published version (with a figure
    • …
    corecore